
It’s not an embedded Linux distribution –
It creates a custom one for you.

Elizabeth Flanagan
Intel Corporation

April 11, 2011

Delivering Predictability: The Yocto Project Autobuilder, Automated
Sanity Testing, License Collection, and Build Statistics Tracking

 2/52

Being proactive about code quality

● Reproducible builds
● Identify bugs and fix early and often
● Reduce time needed for code stabilization
● Avoid integration headaches
● Build performance history
● Manage the chaos
● License compliance
● Deep QA Testing

 3/52

Being proactive about code quality

Maximizing your ability to respond to
changes in a complex embedded

ecosystem.

 4/52

Being proactive about code quality

Reduce Software Development
Lifecycle Churn.

 5/52

Complexities

Our Recipe

 6/52

Complexities

Our Recipe

qemuarm

qemumips

qemuppc qemux86_64

qemux86

 7/52

Complexities

Our Recipe

qemuarm

qemumips

qemuppc qemux86_64

qemux86

Our Recipe

qemuarm

qemumips

qemuppc qemux86_64

qemux86

mpc8315e atom-pc

beagleboard routerstation

 8/52

Complexities

Our Recipe

qemuarm

qemumips

qemuppc qemux86_64

qemux86

mpc8315e atom-pc

beagleboard routerstation

emenlow

Jasperforest
n450 sandybridge

crownbay
Crownbay
-noemgd

 9/52

Complexities

● One recipe
● 5 architectures
● 4 core BSP
● 6 non-core BSPs in meta-intel
● 15 x-compiles
● But....

 10/52

Complexities

● One recipe
● 16 theoretical different image types

per arch * 15 architectures
– Not all arches support all image

types
● 240 total theoretically possible

images
– sato, lsb, sdk....

 11/52

Complexities

If we're not proactive about code
quality, lots of things can go wrong.....

 12/52

Complexities

It's only going to get more complex

 13/52

What we need

– Reproducible builds
– Basic QA
– License tracking
– Finding the pain points

 14/52

Delivering Predictability

Sanity Testing

License Wrangling

Build Statistics

Autobuilder Poky

Yocto Project

 15/52

Delivering Predictability

Sanity Testing

License Wrangling

Build Statistics

Autobuilder Poky

Yocto Project

 16/52

Autobuilders

● Production Autobuilders
● Quickly respond to a fast changing

code base
● Avoid “Works on my machine”-itis
● Find race conditions
● Find host dependent issues
● Find bad commits
● Help bisect build failures
● Help find dependency chain

breakage

 17/52

Autobuilders

● Developer Autobuilders
● Test cross-compilation before

commit
● Production style builds
● Small OS footprint
● Build what you want to build

 18/52

Autobuilders

● Yocto autobuilder
● buildbot based
● git://git.yoctoproject.org/poky-

autobuilder.git
● Setup in under 5 minutes!

 19/52

Autobuilders

● Prerequisites:
● Python 2.6
● python-twisted
● python-jinja2
● python-twisted-mail
● sqllite

 20/52

Autobuilders

● Comes with
● Basic pokyABConfig.py
● Helper scripts
● Easy Installer

 21/52

Set up your own!

cd ~
git clone git://git.yoctoproject.org/poky-autobuilder.git
cd poky-autobuilder
./scripts/poky-setup-autobuilder both
source ~/.profile;
cd ../poky-master; make start
cd ../poky-slave; make start

 22/52

Live Demo

 23/52

Delivering Predictability

Sanity Testing

License Wrangling

Build Statistics

Autobuilder Poky

Yocto Project

 24/52

Sanity Testing

● Extensible
● Frees up QA resources
● Reproducible smoke testing
● Multiarch/multiimage scenarios
● Can run automatically post build via
local.conf
● Or via an autobuilder

 25/52

Sanity Testing

Sanity Test Bitbake Class

Architecture/image based test scenario

Test library/runner

Test helper scripts

 26/52

Sanity Testing

meta/classes/imagetest-qemu.bbclass

scripts/qemuimage-tests/scenario/${ARCH}/*

scripts/qemuimage-testlib and runners

scripts/qemuimage-tests/{sanity|tools}/*

 27/52

Sanity Testing

● Test suite
● Architecture and image based scenarios
● Very easy to add already existing tests

 28/52

Sanity Testing

sanity ssh
sanity scp
sanity dmesg
sanity zypper_help
sanity zypper_search
sanity rpm_query
sanity connman
sanity shutdown

 29/52

Sanity Testing

● Tests
● bash/expect based test scripts
● called via test runners in scripts/sanity
● Tests stored in qemuimage-testlib

●More secure to create tap devs with
poky-gen-tapdevs.

 30/52

Sanity Testing

● Gotchas:
● QEMU user NOPASSWD
● More secure to create tap devs with
poky-gen-tapdevs.

● For headless, see wiki docs:
https://wiki.pokylinux.org/wiki/Enabling_Automation_Test_in_Poky

 31/52

Delivering Predictability

Sanity Testing

License Wrangling

Build Statistics

Autobuilder Poky

Yocto Project

 32/52

License Wrangling

● Verify image compatibility to required license type
● non-GPLv3

● Provides an entire package directory tree
● Actual licenses
● Generics.

● Helps maintain license compliance

 33/52

License Wrangling

Recipe contains:
● LICENSE

● Tells license.bbclass the common license type
● Symlink from license wrangling output to a generic

● LIC_FILES_CHECKSUM
● License file URI
● Checksum
● Where we get the specific license

 34/52

License Wrangling

License are found in:

${POKYBASE}/build/tmp/deploy/images/licenses

 35/52

Delivering Predictability

Sanity Testing

License Wrangling

Build Statistics

Autobuilder Poky

Yocto Project

 36/52

Build Statistics

Build level:
● Host info
● Elapsed build time
● CPU usage
● Build failure information

 37/52

Build Statistics

Package level:
●List of events triggered
●Elapsed event time
●CPU usage
●Event failure information

 38/52

Build Statistics

Package
Event

Build

Event
Event

Package
Event
Event
Event

build/tmp/deploy/images/licenses/:
poky-image-minimal-qemux86
`-- 201103251310
 |-- build_stats
 |-- autoconf-native-2.65-r2
 | |-- do_compile
 | |-- do_configure
 | |-- do_fetch
 | |-- do_install
 | |-- do_patch
 | |-- do_populate_sysroot
 | |-- do_setscene
 | `-- do_unpack
 |-- automake-native-1.11.1-r1
 | |-- do_compile
 | |-- do_configure
 | |-- do_fetch
 | |-- do_install
 | |-- do_patch
 | |-- do_populate_sysroot
 | |-- do_setscene
 | `-- do_unpack

Image Type

 39/52

Build Statistics

 Gives us:
● Performance indicators
● Track down issues

● CPU/Dependancy/IO bound
●Visualize your build performance

● Patch to pybootchart

http://tim.rpsys.net/bootchart2.png

 40/52

Build Statistics Visualization

Time

 41/52

Build Statistics Visualization

 42/52

Build Statistics Visualization

 43/52

Build Statistics Visualization

 44/52

Build Statistics Visualization

 45/52

Where do we go from here?

 46/52

Where do we go from here?

 Autobuilder:
●Meta-targets
●Helper script integration into main config
●Continuous integration

 47/52

Where do we go from here?

 License tracking:
●More generic license files
●Better LICENSE field parsing

 48/52

Where do we go from here?

 Build Statistics:
●Collect even more data.

● Image size w/o free space.
●Better data visualization.

● Web based

 49/52

Production autobuilder

 50/52

Resources
● http://www.yoctoproject.org

● http://git.yoctoproject.org/cgit/cgit.cgi/poky-autobuilder/

● http://autobuilder.yoctoproject.org

● pybootchartgui patch for build statistics
● https://wiki.pokylinux.org/wiki/Enabling_Automation_Test_in_Poky

http://www.yoctoproject.org/
http://git.yoctoproject.org/cgit/cgit.cgi/poky-autobuilder/
http://autobuilder.yoctoproject.org/
http://lists.yoctoproject.org/pipermail/poky/attachments/20110215/869c74d1/attachment.bin
https://wiki.pokylinux.org/wiki/Enabling_Automation_Test_in_Poky

 51/52

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE
AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Intel may make changes to specifications, product descriptions, and plans at any time,
without notice.

All dates provided are subject to change without notice.

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009, Intel Corporation. All rights are protected.

 52/52

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

