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Being proactive about code quality

● Reproducible builds
● Identify bugs and fix early and often
● Reduce time needed for code stabilization
● Avoid integration headaches
● Build performance history
● Manage the chaos
● License compliance
● Deep QA Testing
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Being proactive about code quality

Maximizing your ability to respond to 
changes in a complex embedded 

ecosystem.
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Being proactive about code quality

Reduce Software Development 
Lifecycle Churn.



  5/52

Complexities

Our Recipe
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Complexities

● One recipe
● 5 architectures
● 4 core BSP
● 6 non-core BSPs in meta-intel
● 15 x-compiles
● But....
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Complexities

● One recipe
● 16 theoretical different image types 

per arch * 15 architectures
– Not all arches support all image 

types
● 240 total theoretically possible 

images
– sato, lsb, sdk....
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Complexities

If we're not proactive about code 
quality, lots of things can go wrong.....
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Complexities

It's only going to get more complex
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What we need

– Reproducible builds
– Basic QA
– License tracking
– Finding the pain points



  14/52

Delivering Predictability

Sanity Testing

License Wrangling

Build Statistics

Autobuilder Poky

Yocto Project



  15/52

Delivering Predictability

Sanity Testing

License Wrangling

Build Statistics

Autobuilder Poky

Yocto Project



  16/52

Autobuilders

● Production Autobuilders
● Quickly respond to a fast changing 

code base
● Avoid “Works on my machine”-itis
● Find race conditions
● Find host dependent issues
● Find bad commits
● Help bisect build failures
● Help find dependency chain 

breakage
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Autobuilders

● Developer Autobuilders
● Test cross-compilation before 

commit
● Production style builds
● Small OS footprint
● Build what you want to build
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Autobuilders

● Yocto autobuilder
● buildbot based
● git://git.yoctoproject.org/poky-

autobuilder.git
● Setup in under 5 minutes!
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Autobuilders

● Prerequisites:
● Python 2.6
● python-twisted
● python-jinja2
● python-twisted-mail
● sqllite
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Autobuilders

● Comes with
● Basic pokyABConfig.py
● Helper scripts
● Easy Installer
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Set up your own!

cd ~
git clone git://git.yoctoproject.org/poky-autobuilder.git
cd poky-autobuilder
./scripts/poky-setup-autobuilder both
source ~/.profile;
cd ../poky-master; make start
cd ../poky-slave; make start
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Live Demo
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Sanity Testing

● Extensible
● Frees up QA resources
● Reproducible smoke testing
● Multiarch/multiimage scenarios
● Can run automatically post build via 
local.conf
● Or via an autobuilder
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Sanity Testing

Sanity Test Bitbake Class

Architecture/image based test scenario

Test library/runner

Test helper scripts
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Sanity Testing

meta/classes/imagetest-qemu.bbclass

scripts/qemuimage-tests/scenario/${ARCH}/*

scripts/qemuimage-testlib and runners

scripts/qemuimage-tests/{sanity|tools}/*
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Sanity Testing

● Test suite
●  Architecture and image based scenarios 
●  Very easy to add already existing tests
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Sanity Testing

sanity ssh
sanity scp
sanity dmesg
sanity zypper_help
sanity zypper_search
sanity rpm_query
sanity connman
sanity shutdown
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Sanity Testing

● Tests
●  bash/expect based test scripts
●  called via test runners in scripts/sanity 
●  Tests stored in qemuimage-testlib

●More secure to create tap devs with 
poky-gen-tapdevs.
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Sanity Testing

● Gotchas:
●  QEMU user NOPASSWD
●  More secure to create tap devs with 
poky-gen-tapdevs.

●  For headless, see wiki docs: 
https://wiki.pokylinux.org/wiki/Enabling_Automation_Test_in_Poky
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License Wrangling

● Verify image compatibility to required license type
●  non-GPLv3

● Provides an entire package directory tree
●  Actual licenses 
●  Generics.

● Helps maintain license compliance
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License Wrangling

Recipe contains:
●  LICENSE

●  Tells license.bbclass the common license type
●  Symlink from license wrangling output to a generic

●  LIC_FILES_CHECKSUM
●  License file URI
●  Checksum
●  Where we get the specific license
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License Wrangling

License are found in:

${POKYBASE}/build/tmp/deploy/images/licenses
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Build Statistics

Build level:
●  Host info
●  Elapsed build time
●  CPU usage
●  Build failure information
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Build Statistics

Package level:
●List of events triggered
●Elapsed event time
●CPU usage
●Event failure information
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Build Statistics

Package
Event

Build

Event
Event

Package
Event
Event
Event

build/tmp/deploy/images/licenses/:
poky-image-minimal-qemux86
`-- 201103251310
    |-- build_stats
    |-- autoconf-native-2.65-r2
    |   |-- do_compile
    |   |-- do_configure
    |   |-- do_fetch
    |   |-- do_install
    |   |-- do_patch
    |   |-- do_populate_sysroot
    |   |-- do_setscene
    |   `-- do_unpack
    |-- automake-native-1.11.1-r1
    |   |-- do_compile
    |   |-- do_configure
    |   |-- do_fetch
    |   |-- do_install
    |   |-- do_patch
    |   |-- do_populate_sysroot
    |   |-- do_setscene
    |   `-- do_unpack

Image Type
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Build Statistics

 Gives us:
●  Performance indicators
●  Track down issues

●  CPU/Dependancy/IO bound 
●Visualize your build performance

●  Patch to pybootchart 

http://tim.rpsys.net/bootchart2.png
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Build Statistics Visualization

Time
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Build Statistics Visualization
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Build Statistics Visualization
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Build Statistics Visualization
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Build Statistics Visualization
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Where do we go from here?
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Where do we go from here?

 Autobuilder:
●Meta-targets
●Helper script integration into main config
●Continuous integration
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Where do we go from here?

 License tracking:
●More generic license files
●Better LICENSE field parsing



  48/52

Where do we go from here?

 Build Statistics:
●Collect even more data.

●  Image size w/o free space.
●Better data visualization.

●  Web based
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Production autobuilder
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Resources
● http://www.yoctoproject.org

● http://git.yoctoproject.org/cgit/cgit.cgi/poky-autobuilder/

● http://autobuilder.yoctoproject.org

● pybootchartgui patch for build statistics
● https://wiki.pokylinux.org/wiki/Enabling_Automation_Test_in_Poky

http://www.yoctoproject.org/
http://git.yoctoproject.org/cgit/cgit.cgi/poky-autobuilder/
http://autobuilder.yoctoproject.org/
http://lists.yoctoproject.org/pipermail/poky/attachments/20110215/869c74d1/attachment.bin
https://wiki.pokylinux.org/wiki/Enabling_Automation_Test_in_Poky


  51/52

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® 
PRODUCTS.  EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF 
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND 
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE 
AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES 
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR 
INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL 
PROPERTY RIGHT.

Intel may make changes to specifications, product descriptions, and plans at any time, 
without notice.  

All dates provided are subject to change without notice.

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009, Intel Corporation. All rights are protected.
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