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Overview

1 Testing =
Efficient software development

2 Testing embedded software =
special

3 Open source =
more testing?
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Testing is omnipresent
in the software development process

Develop

Integrate

Validate

Deploy
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Writing tests saves time

 Development is modifying code

 Every change risks breaking the code

 The longer it takes to find a problem, 
the more costly to fix

 Write tests early, to save time later
 More difficult to add test to existing software
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Think of the future

 You will modify your code

 Other developers will modify your code

 Make sure those modifications can be tested
 make your own tests available to others⇒

 Automation
 Standardize on test framework
 Standardize on how tests are run
 Document your test approach

http://creativecommons.org/licenses/by/3.0/
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Focus on saving time

 No need to focus on coverage
 “Smoke test” for all features
 (Optional) built-in self-test of the complete firmware
 Unit test for the feature being worked on

 Focus on tricky parts of implementation
 Put support for tests into the implementation

 Assertions
 Tracing

 Tests must run fast
 So not complete!
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Testing embedded software
is special

Software depends on hardware

Limited access to hardware
and hardware itself is limited

Time is important

Updates are essential
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Embedded software
is written for specific hardware

 Requires specific inputs and outputs

 Target has different architecture than PC
 Endianness
 Memory model
 Hardware accelerators

 Target has limited resources
 Memory
 Disk
 Speed

http://creativecommons.org/licenses/by/3.0/
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Hardware test setup

Make hardware available remotely

Accessible over network

 I/O's can be controlled remotely

Power can be controlled remotely

http://creativecommons.org/licenses/by/3.0/
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Example test setup for wireless device

CulpritCulprit

DUT Controller

PC

UART
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Simulation overcomes 
limited access to hardware

 Different levels of simulation
 Emulation: qemu (PowerPC, ARM, MIPS, M68K, SPARC)
 Virtualization: KVM, VirtualBox
 Stubbing/hardware abstraction

 PC has much more resources and performance
 Many more test tools on PC than on real platform
 Simulation of inputs is essential for reproducability
 Stubbing makes for the easiest testing and debugging

 More effort to maintain the HAL
 HAL isn't tested

http://creativecommons.org/licenses/by/3.0/
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In embedded software
time is a factor

 Time is essential part of functionality

 Race conditions are time-dependent

 Test code (tracing, assertions) may affect timing

http://creativecommons.org/licenses/by/3.0/
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Testing must take into account timing

 Time-sensitive tests on target platform
 Using file input

 Simulate time
 Using profiling info to insert simulation delays
 (Idea of Johan Cockx, Imec)
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Working update system is essential
for embedded systems

 If update goes wrong, device is dead
 No alternative boot methods
 Not reachable

 Developer must make sure that updates never fail
 Power failure: corrupted software or filesystem
 Integrity of transfer: corrupted software
 Compatibility between pieces: e.g. kernel – module
 Compatibility with hardware: e.g. wrong board support

 Package manager helps a lot, but no silver bullet
 Fallback boot should always exist
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Testing and open source software

 Open source tools to support testing
 Unit tests
 Doctest
 D-Bus

 Testing of open source tools
 Gstreamer
 Linux kernel

http://creativecommons.org/licenses/by/3.0/
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Not many open source tools exist
to help developer with testing

opensourcetesting.org lists 36 unit test frameworks

But these are not entirely useful for the developer
 No need to have extensive reporting
 Fixtures and datasets don't give so much added value

Still some advantages
 Lowers threshold to add tests
 Validation team will love you

http://creativecommons.org/licenses/by/3.0/
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QtTestLib is a useful unit test framework

QtTestLib offers

 Selective execution

 Fixtures

 Data sets

 Benchmarking (= top-level profiling)

 Mock for user input in GUI
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Python's documentation test
is perfect for developer tests

Python documentation tests are in the code itself

 Low threshold to add test

 Easy to update test, it's right there

 Can easily run tests associated with specific function
even if they call other functions

Unfortunately, nothing similar exists outside python 
(AFAIK)
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D-Bus helps for testing

 D-Bus is great for IPC

 It is also a great tool for testing
 Bindings for scripting language

 Create stub implementation of required methods/signals

 Verify method return value against expected return value

 Insert signals into the code to expose internals
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Developer tests
are even more important for open source

 There is no validation team
 cycles are longer⇒

 Contributors don't know the code
 higher risk of breaking things⇒

 Many contributors
 larger benefit from sharing tests⇒

 Contributors only interested in added feature
 needs to be motivated to also update tests⇒
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Gstreamer has testing
but it's not good enough

 All Gstreamer elements have a test
required to enter gst-plugins-good

 Many stub elements e.g. videotestsrc

However:
 Not trivial to run specific test
 May take long (e.g. videocrop)

Gstreamer should:
 Add boilerplate to test more than just buffer I/O

e.g. handling of QoS, caps, events
 Put the tests closer to source code, so contributors see them
 Split into fast individual tests
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Linux kernel
has stubs and test framework

 For most device types, stub implementation exists
 For USB gadget: dummy_hcd, zero
 For MTD (= flash): block2mtd

 Linux Test Project (LTP) offers a large test suite
 Mainly for filesystems and networking
 Mainly regression, load and performance tests
 Simple to select specific test
 Good boilerplate  good base to write new test⇒
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Conclusions

 Developer should write tests from the start
It saves time!

 Share the tests with other developers

 Even more important for open source projects

 For embedded systems,
hardware abstraction / stubs are essential
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www.mind.be

www.essensium.com

Essensium NV
Mind - Embedded Software Division
Gaston Geenslaan 9, B-3001 Leuven

Tel : +32 16-28 65 00
Fax : +32 16-28 65 01

email : info@essensium.com
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Spread the word !

 Feel free to use these slides
elinux.org, look for ELC Europe 2010

 Text at
http://mind.be/?page=embedded-software-testing
http://mindlinux.wordpress.com

http://elinux.org/ELC_Europe_2010_Presentations
http://mind.be/?page=embedded-software-testing
http://mindlinux.wordpress.com/
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