
Testing embedded software

2Arnout Vandecappelle
lle

Overview

1 Testing =
Efficient software development

2 Testing embedded software =
special

3 Open source =
more testing?

http://creativecommons.org/licenses/by/3.0/

3Arnout Vandecappelle
lle

Testing is omnipresent
in the software development process

Develop

Integrate

Validate

Deploy

http://creativecommons.org/licenses/by/3.0/

4Arnout Vandecappelle
lle

Writing tests saves time

 Development is modifying code

 Every change risks breaking the code

 The longer it takes to find a problem,
the more costly to fix

 Write tests early, to save time later
 More difficult to add test to existing software

http://creativecommons.org/licenses/by/3.0/

5Arnout Vandecappelle
lle

Think of the future

 You will modify your code

 Other developers will modify your code

 Make sure those modifications can be tested
 make your own tests available to others⇒

 Automation
 Standardize on test framework
 Standardize on how tests are run
 Document your test approach

http://creativecommons.org/licenses/by/3.0/

6Arnout Vandecappelle
lle

Focus on saving time

 No need to focus on coverage
 “Smoke test” for all features
 (Optional) built-in self-test of the complete firmware
 Unit test for the feature being worked on

 Focus on tricky parts of implementation
 Put support for tests into the implementation

 Assertions
 Tracing

 Tests must run fast
 So not complete!

http://creativecommons.org/licenses/by/3.0/

7Arnout Vandecappelle
lle

Testing embedded software
is special

Software depends on hardware

Limited access to hardware
and hardware itself is limited

Time is important

Updates are essential

http://creativecommons.org/licenses/by/3.0/

8Arnout Vandecappelle
lle

Embedded software
is written for specific hardware

 Requires specific inputs and outputs

 Target has different architecture than PC
 Endianness
 Memory model
 Hardware accelerators

 Target has limited resources
 Memory
 Disk
 Speed

http://creativecommons.org/licenses/by/3.0/

9Arnout Vandecappelle
lle

Hardware test setup

Make hardware available remotely

Accessible over network

 I/O's can be controlled remotely

Power can be controlled remotely

http://creativecommons.org/licenses/by/3.0/

10Arnout Vandecappelle
lle

Example test setup for wireless device

CulpritCulprit

DUT Controller

PC

UART

http://creativecommons.org/licenses/by/3.0/

11Arnout Vandecappelle
lle

Simulation overcomes
limited access to hardware

 Different levels of simulation
 Emulation: qemu (PowerPC, ARM, MIPS, M68K, SPARC)
 Virtualization: KVM, VirtualBox
 Stubbing/hardware abstraction

 PC has much more resources and performance
 Many more test tools on PC than on real platform
 Simulation of inputs is essential for reproducability
 Stubbing makes for the easiest testing and debugging

 More effort to maintain the HAL
 HAL isn't tested

http://creativecommons.org/licenses/by/3.0/

12Arnout Vandecappelle
lle

In embedded software
time is a factor

 Time is essential part of functionality

 Race conditions are time-dependent

 Test code (tracing, assertions) may affect timing

http://creativecommons.org/licenses/by/3.0/

13Arnout Vandecappelle
lle

Testing must take into account timing

 Time-sensitive tests on target platform
 Using file input

 Simulate time
 Using profiling info to insert simulation delays
 (Idea of Johan Cockx, Imec)

http://creativecommons.org/licenses/by/3.0/

14Arnout Vandecappelle
lle

Working update system is essential
for embedded systems

 If update goes wrong, device is dead
 No alternative boot methods
 Not reachable

 Developer must make sure that updates never fail
 Power failure: corrupted software or filesystem
 Integrity of transfer: corrupted software
 Compatibility between pieces: e.g. kernel – module
 Compatibility with hardware: e.g. wrong board support

 Package manager helps a lot, but no silver bullet
 Fallback boot should always exist

http://creativecommons.org/licenses/by/3.0/

15Arnout Vandecappelle
lle

Testing and open source software

 Open source tools to support testing
 Unit tests
 Doctest
 D-Bus

 Testing of open source tools
 Gstreamer
 Linux kernel

http://creativecommons.org/licenses/by/3.0/

16Arnout Vandecappelle
lle

Not many open source tools exist
to help developer with testing

opensourcetesting.org lists 36 unit test frameworks

But these are not entirely useful for the developer
 No need to have extensive reporting
 Fixtures and datasets don't give so much added value

Still some advantages
 Lowers threshold to add tests
 Validation team will love you

http://creativecommons.org/licenses/by/3.0/

17Arnout Vandecappelle
lle

QtTestLib is a useful unit test framework

QtTestLib offers

 Selective execution

 Fixtures

 Data sets

 Benchmarking (= top-level profiling)

 Mock for user input in GUI

http://creativecommons.org/licenses/by/3.0/

18Arnout Vandecappelle
lle

Python's documentation test
is perfect for developer tests

Python documentation tests are in the code itself

 Low threshold to add test

 Easy to update test, it's right there

 Can easily run tests associated with specific function
even if they call other functions

Unfortunately, nothing similar exists outside python
(AFAIK)

http://creativecommons.org/licenses/by/3.0/

19Arnout Vandecappelle
lle

D-Bus helps for testing

 D-Bus is great for IPC

 It is also a great tool for testing
 Bindings for scripting language

 Create stub implementation of required methods/signals

 Verify method return value against expected return value

 Insert signals into the code to expose internals

http://creativecommons.org/licenses/by/3.0/

20Arnout Vandecappelle
lle

Developer tests
are even more important for open source

 There is no validation team
 cycles are longer⇒

 Contributors don't know the code
 higher risk of breaking things⇒

 Many contributors
 larger benefit from sharing tests⇒

 Contributors only interested in added feature
 needs to be motivated to also update tests⇒

http://creativecommons.org/licenses/by/3.0/

21Arnout Vandecappelle
lle

Gstreamer has testing
but it's not good enough

 All Gstreamer elements have a test
required to enter gst-plugins-good

 Many stub elements e.g. videotestsrc

However:
 Not trivial to run specific test
 May take long (e.g. videocrop)

Gstreamer should:
 Add boilerplate to test more than just buffer I/O

e.g. handling of QoS, caps, events
 Put the tests closer to source code, so contributors see them
 Split into fast individual tests

http://creativecommons.org/licenses/by/3.0/

22Arnout Vandecappelle
lle

Linux kernel
has stubs and test framework

 For most device types, stub implementation exists
 For USB gadget: dummy_hcd, zero
 For MTD (= flash): block2mtd

 Linux Test Project (LTP) offers a large test suite
 Mainly for filesystems and networking
 Mainly regression, load and performance tests
 Simple to select specific test
 Good boilerplate good base to write new test⇒

http://creativecommons.org/licenses/by/3.0/

23Arnout Vandecappelle
lle

Conclusions

 Developer should write tests from the start
It saves time!

 Share the tests with other developers

 Even more important for open source projects

 For embedded systems,
hardware abstraction / stubs are essential

http://creativecommons.org/licenses/by/3.0/

24Arnout Vandecappelle
lle

www.mind.be

www.essensium.com

Essensium NV
Mind - Embedded Software Division
Gaston Geenslaan 9, B-3001 Leuven

Tel : +32 16-28 65 00
Fax : +32 16-28 65 01

email : info@essensium.com

http://creativecommons.org/licenses/by/3.0/

25Arnout Vandecappelle
lle

Spread the word !

 Feel free to use these slides
elinux.org, look for ELC Europe 2010

 Text at
http://mind.be/?page=embedded-software-testing
http://mindlinux.wordpress.com

http://elinux.org/ELC_Europe_2010_Presentations
http://mind.be/?page=embedded-software-testing
http://mindlinux.wordpress.com/
http://creativecommons.org/licenses/by/3.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

