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Overview

1 Testing =
Efficient software development

2 Testing embedded software =
special

3 Open source =
more testing?
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Testing is omnipresent
in the software development process

Develop

Integrate

Validate

Deploy
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Writing tests saves time

 Development is modifying code

 Every change risks breaking the code

 The longer it takes to find a problem, 
the more costly to fix

 Write tests early, to save time later
 More difficult to add test to existing software
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Think of the future

 You will modify your code

 Other developers will modify your code

 Make sure those modifications can be tested
 make your own tests available to others⇒

 Automation
 Standardize on test framework
 Standardize on how tests are run
 Document your test approach
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Focus on saving time

 No need to focus on coverage
 “Smoke test” for all features
 (Optional) built-in self-test of the complete firmware
 Unit test for the feature being worked on

 Focus on tricky parts of implementation
 Put support for tests into the implementation

 Assertions
 Tracing

 Tests must run fast
 So not complete!
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Testing embedded software
is special

Software depends on hardware

Limited access to hardware
and hardware itself is limited

Time is important

Updates are essential
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Embedded software
is written for specific hardware

 Requires specific inputs and outputs

 Target has different architecture than PC
 Endianness
 Memory model
 Hardware accelerators

 Target has limited resources
 Memory
 Disk
 Speed
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Hardware test setup

Make hardware available remotely

Accessible over network

 I/O's can be controlled remotely

Power can be controlled remotely
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Example test setup for wireless device

CulpritCulprit

DUT Controller

PC

UART
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Simulation overcomes 
limited access to hardware

 Different levels of simulation
 Emulation: qemu (PowerPC, ARM, MIPS, M68K, SPARC)
 Virtualization: KVM, VirtualBox
 Stubbing/hardware abstraction

 PC has much more resources and performance
 Many more test tools on PC than on real platform
 Simulation of inputs is essential for reproducability
 Stubbing makes for the easiest testing and debugging

 More effort to maintain the HAL
 HAL isn't tested
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In embedded software
time is a factor

 Time is essential part of functionality

 Race conditions are time-dependent

 Test code (tracing, assertions) may affect timing
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Testing must take into account timing

 Time-sensitive tests on target platform
 Using file input

 Simulate time
 Using profiling info to insert simulation delays
 (Idea of Johan Cockx, Imec)
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Working update system is essential
for embedded systems

 If update goes wrong, device is dead
 No alternative boot methods
 Not reachable

 Developer must make sure that updates never fail
 Power failure: corrupted software or filesystem
 Integrity of transfer: corrupted software
 Compatibility between pieces: e.g. kernel – module
 Compatibility with hardware: e.g. wrong board support

 Package manager helps a lot, but no silver bullet
 Fallback boot should always exist
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Testing and open source software

 Open source tools to support testing
 Unit tests
 Doctest
 D-Bus

 Testing of open source tools
 Gstreamer
 Linux kernel
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Not many open source tools exist
to help developer with testing

opensourcetesting.org lists 36 unit test frameworks

But these are not entirely useful for the developer
 No need to have extensive reporting
 Fixtures and datasets don't give so much added value

Still some advantages
 Lowers threshold to add tests
 Validation team will love you
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QtTestLib is a useful unit test framework

QtTestLib offers

 Selective execution

 Fixtures

 Data sets

 Benchmarking (= top-level profiling)

 Mock for user input in GUI

http://creativecommons.org/licenses/by/3.0/


18Arnout Vandecappelle
lle

Python's documentation test
is perfect for developer tests

Python documentation tests are in the code itself

 Low threshold to add test

 Easy to update test, it's right there

 Can easily run tests associated with specific function
even if they call other functions

Unfortunately, nothing similar exists outside python 
(AFAIK)
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D-Bus helps for testing

 D-Bus is great for IPC

 It is also a great tool for testing
 Bindings for scripting language

 Create stub implementation of required methods/signals

 Verify method return value against expected return value

 Insert signals into the code to expose internals
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Developer tests
are even more important for open source

 There is no validation team
 cycles are longer⇒

 Contributors don't know the code
 higher risk of breaking things⇒

 Many contributors
 larger benefit from sharing tests⇒

 Contributors only interested in added feature
 needs to be motivated to also update tests⇒
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Gstreamer has testing
but it's not good enough

 All Gstreamer elements have a test
required to enter gst-plugins-good

 Many stub elements e.g. videotestsrc

However:
 Not trivial to run specific test
 May take long (e.g. videocrop)

Gstreamer should:
 Add boilerplate to test more than just buffer I/O

e.g. handling of QoS, caps, events
 Put the tests closer to source code, so contributors see them
 Split into fast individual tests
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Linux kernel
has stubs and test framework

 For most device types, stub implementation exists
 For USB gadget: dummy_hcd, zero
 For MTD (= flash): block2mtd

 Linux Test Project (LTP) offers a large test suite
 Mainly for filesystems and networking
 Mainly regression, load and performance tests
 Simple to select specific test
 Good boilerplate  good base to write new test⇒
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Conclusions

 Developer should write tests from the start
It saves time!

 Share the tests with other developers

 Even more important for open source projects

 For embedded systems,
hardware abstraction / stubs are essential
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www.mind.be

www.essensium.com

Essensium NV
Mind - Embedded Software Division
Gaston Geenslaan 9, B-3001 Leuven

Tel : +32 16-28 65 00
Fax : +32 16-28 65 01

email : info@essensium.com
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Spread the word !

 Feel free to use these slides
elinux.org, look for ELC Europe 2010

 Text at
http://mind.be/?page=embedded-software-testing
http://mindlinux.wordpress.com

http://elinux.org/ELC_Europe_2010_Presentations
http://mind.be/?page=embedded-software-testing
http://mindlinux.wordpress.com/
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