
Testing embedded software

2Arnout Vandecappelle
lle

Overview

1 Testing =
Efficient software development

2 Testing embedded software =
special

3 Open source =
more testing?

http://creativecommons.org/licenses/by/3.0/

3Arnout Vandecappelle
lle

Testing is omnipresent
in the software development process

Develop

Integrate

Validate

Deploy

http://creativecommons.org/licenses/by/3.0/

4Arnout Vandecappelle
lle

Writing tests saves time

 Development is modifying code

 Every change risks breaking the code

 The longer it takes to find a problem,
the more costly to fix

 Write tests early, to save time later
 More difficult to add test to existing software

http://creativecommons.org/licenses/by/3.0/

5Arnout Vandecappelle
lle

Think of the future

 You will modify your code

 Other developers will modify your code

 Make sure those modifications can be tested
 make your own tests available to others⇒

 Automation
 Standardize on test framework
 Standardize on how tests are run
 Document your test approach

http://creativecommons.org/licenses/by/3.0/

6Arnout Vandecappelle
lle

Focus on saving time

 No need to focus on coverage
 “Smoke test” for all features
 (Optional) built-in self-test of the complete firmware
 Unit test for the feature being worked on

 Focus on tricky parts of implementation
 Put support for tests into the implementation

 Assertions
 Tracing

 Tests must run fast
 So not complete!

http://creativecommons.org/licenses/by/3.0/

7Arnout Vandecappelle
lle

Testing embedded software
is special

Software depends on hardware

Limited access to hardware
and hardware itself is limited

Time is important

Updates are essential

http://creativecommons.org/licenses/by/3.0/

8Arnout Vandecappelle
lle

Embedded software
is written for specific hardware

 Requires specific inputs and outputs

 Target has different architecture than PC
 Endianness
 Memory model
 Hardware accelerators

 Target has limited resources
 Memory
 Disk
 Speed

http://creativecommons.org/licenses/by/3.0/

9Arnout Vandecappelle
lle

Hardware test setup

Make hardware available remotely

Accessible over network

 I/O's can be controlled remotely

Power can be controlled remotely

http://creativecommons.org/licenses/by/3.0/

10Arnout Vandecappelle
lle

Example test setup for wireless device

CulpritCulprit

DUT Controller

PC

UART

http://creativecommons.org/licenses/by/3.0/

11Arnout Vandecappelle
lle

Simulation overcomes
limited access to hardware

 Different levels of simulation
 Emulation: qemu (PowerPC, ARM, MIPS, M68K, SPARC)
 Virtualization: KVM, VirtualBox
 Stubbing/hardware abstraction

 PC has much more resources and performance
 Many more test tools on PC than on real platform
 Simulation of inputs is essential for reproducability
 Stubbing makes for the easiest testing and debugging

 More effort to maintain the HAL
 HAL isn't tested

http://creativecommons.org/licenses/by/3.0/

12Arnout Vandecappelle
lle

In embedded software
time is a factor

 Time is essential part of functionality

 Race conditions are time-dependent

 Test code (tracing, assertions) may affect timing

http://creativecommons.org/licenses/by/3.0/

13Arnout Vandecappelle
lle

Testing must take into account timing

 Time-sensitive tests on target platform
 Using file input

 Simulate time
 Using profiling info to insert simulation delays
 (Idea of Johan Cockx, Imec)

http://creativecommons.org/licenses/by/3.0/

14Arnout Vandecappelle
lle

Working update system is essential
for embedded systems

 If update goes wrong, device is dead
 No alternative boot methods
 Not reachable

 Developer must make sure that updates never fail
 Power failure: corrupted software or filesystem
 Integrity of transfer: corrupted software
 Compatibility between pieces: e.g. kernel – module
 Compatibility with hardware: e.g. wrong board support

 Package manager helps a lot, but no silver bullet
 Fallback boot should always exist

http://creativecommons.org/licenses/by/3.0/

15Arnout Vandecappelle
lle

Testing and open source software

 Open source tools to support testing
 Unit tests
 Doctest
 D-Bus

 Testing of open source tools
 Gstreamer
 Linux kernel

http://creativecommons.org/licenses/by/3.0/

16Arnout Vandecappelle
lle

Not many open source tools exist
to help developer with testing

opensourcetesting.org lists 36 unit test frameworks

But these are not entirely useful for the developer
 No need to have extensive reporting
 Fixtures and datasets don't give so much added value

Still some advantages
 Lowers threshold to add tests
 Validation team will love you

http://creativecommons.org/licenses/by/3.0/

17Arnout Vandecappelle
lle

QtTestLib is a useful unit test framework

QtTestLib offers

 Selective execution

 Fixtures

 Data sets

 Benchmarking (= top-level profiling)

 Mock for user input in GUI

http://creativecommons.org/licenses/by/3.0/

18Arnout Vandecappelle
lle

Python's documentation test
is perfect for developer tests

Python documentation tests are in the code itself

 Low threshold to add test

 Easy to update test, it's right there

 Can easily run tests associated with specific function
even if they call other functions

Unfortunately, nothing similar exists outside python
(AFAIK)

http://creativecommons.org/licenses/by/3.0/

19Arnout Vandecappelle
lle

D-Bus helps for testing

 D-Bus is great for IPC

 It is also a great tool for testing
 Bindings for scripting language

 Create stub implementation of required methods/signals

 Verify method return value against expected return value

 Insert signals into the code to expose internals

http://creativecommons.org/licenses/by/3.0/

20Arnout Vandecappelle
lle

Developer tests
are even more important for open source

 There is no validation team
 cycles are longer⇒

 Contributors don't know the code
 higher risk of breaking things⇒

 Many contributors
 larger benefit from sharing tests⇒

 Contributors only interested in added feature
 needs to be motivated to also update tests⇒

http://creativecommons.org/licenses/by/3.0/

21Arnout Vandecappelle
lle

Gstreamer has testing
but it's not good enough

 All Gstreamer elements have a test
required to enter gst-plugins-good

 Many stub elements e.g. videotestsrc

However:
 Not trivial to run specific test
 May take long (e.g. videocrop)

Gstreamer should:
 Add boilerplate to test more than just buffer I/O

e.g. handling of QoS, caps, events
 Put the tests closer to source code, so contributors see them
 Split into fast individual tests

http://creativecommons.org/licenses/by/3.0/

22Arnout Vandecappelle
lle

Linux kernel
has stubs and test framework

 For most device types, stub implementation exists
 For USB gadget: dummy_hcd, zero
 For MTD (= flash): block2mtd

 Linux Test Project (LTP) offers a large test suite
 Mainly for filesystems and networking
 Mainly regression, load and performance tests
 Simple to select specific test
 Good boilerplate good base to write new test⇒

http://creativecommons.org/licenses/by/3.0/

23Arnout Vandecappelle
lle

Conclusions

 Developer should write tests from the start
It saves time!

 Share the tests with other developers

 Even more important for open source projects

 For embedded systems,
hardware abstraction / stubs are essential

http://creativecommons.org/licenses/by/3.0/

24Arnout Vandecappelle
lle

www.mind.be

www.essensium.com

Essensium NV
Mind - Embedded Software Division
Gaston Geenslaan 9, B-3001 Leuven

Tel : +32 16-28 65 00
Fax : +32 16-28 65 01

email : info@essensium.com

http://creativecommons.org/licenses/by/3.0/

25Arnout Vandecappelle
lle

Spread the word !

 Feel free to use these slides
elinux.org, look for ELC Europe 2010

 Text at
http://mind.be/?page=embedded-software-testing
http://mindlinux.wordpress.com

http://elinux.org/ELC_Europe_2010_Presentations
http://mind.be/?page=embedded-software-testing
http://mindlinux.wordpress.com/
http://creativecommons.org/licenses/by/3.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

