How Not to Write an x86 Platform Driver
Core-kernel dev plays with device drivers....

October 24, 2013
Darren Hart <darren.hart@intel.com>

ELC-E = Edinburgh = 2013

mailto:darren.hart@intel.com

Agenda

* Platform

* MinnowBoard Examples
* Lessons Learned

* MinnowBoard Take 2

* Next Steps

ELC-E = Edinburgh = 2013

http://www.yoctoproject.org/

Agenda

* Platform

ELC-E = Edinburgh = 2013

Platform

* Computer architecture (PC)
* Software frameworks (OS, application framework, etc.)
* |Intel-ese: A CPU and Chipset... or SoC... or...
* Linux Platform drivers

* Pseudo-bus drivers

* Board-file drivers

* (Drivers without hardware enumeration and description)
* Examples

* PCBIOS

* UEF

* Android

* There's just “little bit" of room for confusion here...

ELC-E = Edinburgh = 2013

Agenda

* MinnowBoard Examples

ELC-E = Edinburgh = 2013

MinnowBoard: Overview

Intel Atom E6xx CPU (TunnelCreek)
Intel EG20T PCH (Topcliff)
TunnelCreek + Topcliff = Queensbay (Platform!)

32bit UEFI Firmware

One of the first designs to make full use of all the GPIO
* Buttons

* LEDs

UART
* 50MHz clock not the default for the driver (pch_uart)

* Ethernet

* Low-cost PHY with no EPROM for the Ethernet Address

ELC-E = Edinburgh = 2013

MinnowBoard: Dynamic Baseboard

Typical x86 designs have fixed baseboard
* Expansion via self-enumerating buses

* MinnowBoard supports daughter cards called “Lures”
- USB
* PCI
* 12C
* SPI
* CAN
* GPIO

* Requires an in-field-defined hardware description mechanism

ELC-E = Edinburgh = 2013

MinnowBoard: GPIO

* Three sources of GPIO
* MFD -> LPC -> GPIO Core (5) and Suspend (8) Wells
* PCH(12)
* Both PCl enumerated
* Uses
* 4 User Buttons
* 2 User LEDs
* PHY Reset
* Expansion GPIO

ELC-E = Edinburgh = 2013

MinnowBoard: Board-Files

* A board-file is a self-describing non-enumerated driver
* Several examples in the kernel to follow

* Simple to write
* Reserve GPIO
* Buttons, LEDs, PHY Reset

* Define and export platform functions
* PHY wakeup, board detection

* Create the Pseudo-bus drivers
* gpio_keys
* leds-gpio

* Export expansion GPIO to sysfs

ELC-E = Edinburgh = 2013

MinnowBoard: Board-Files

$ wc -1 drivers/platform/x86/minnowboard*[ch]
108 drivers/platform/x86/minnowboard-gpio.c
60 drivers/platform/x86/minnowboard-gpio.h
101 drivers/platform/x86/minnowboard-keys.c
193 drivers/platform/x86/minnowboard.c
462 total

static int __init minnow_module_init(void)

{

gpio_request _array(hwid gpios, ARRAY_ SIZE(hwid gpios));

gpio_request_one(GPIO PHY RESET, GPIOF_DIR OUT | GPIOF_INIT HIGH | GPIOF_EXPORT,
"minnow_phy reset");

platform_device register(&ninnow gpio leds);

}

bool minnow detect(void)

{

const char *cmp;

cmp = dmi_get_system_info(DMI_BOARD_NAME);
if (cmp && strstr(cmp, "MinnowBoard"))
return true;

return false;

}
EXPORT_SYMBOL_GPL(minnow detect);

L]
(lntel
10/36 ELC-E = Edinburgh = 2013

MinnowBoard: Boargl

$ wc -1 drivers/platform/x86/minnowboard*[ch]
108 drivers/platform/x86/minnowboard-gpio.c
60 drivers/platform/x86/minnowboard-gpio.h
101 drivers/platform/x86/minnowboard-keys.c
193 drivers/platform/x86/minnowboard.c
462 total

static int __ init minnow_module_init(void)

{

gpio_request _array(hwid gpios, A" SIZE(' i1 gpios)

gpio_request_one(GPIO PHY RES GPIOF DIR OUT | © ®IOF INIT: wH | GPIOF_EXPORT,
"minnow_plv , eset");

platform_device register(aninnow gpio 1/ ds);

}

bool minnow detect(voi

{

const char *c

cmp = dmi ._system 1. "2/ 4I BCPARD NAMF;
if (cmp strstr{cm_; ‘. nnow Lard")?}
Devurn tru

re n false;

}
EXPORT . 9L _GPL(minnow. >tect):

(:Eg;
~r
L

11/36 ELC-E = Edinburgh = 2013

MinnowBoard: Board-Files Bad

Not automatically enumerated and loaded
* Leads to evil vendor trees

* Make assumptions about hardware layout
* Dangerous
* Reduces image reuse
* Fragment the platform
Don’t leverage code reuse
Code bloat, added maintenance
Add unnecessary dependency to independent drivers
* pch_uart, pch_gbe, Ipc_sch, gpio_sch, gpio_pch

DO NOT WRITE X86 BOARD FILES... TO BE CONTINUED...

ELC-E = Edinburgh = 2013

MinnowBoard: UART

PCl Enumerated

Vendor/Device ID insufficient

Firmware can select the clock

Existing precedent uses SMBIOS (not for new drivers)

static struct dmi_system _id pch_uart_dmi_table[] = {

%..

.ident = "Fish River Island II",

{

b
(void *)FRI2_48 UARTCLK,

DMI_MATCH(DMI_PRODUCT_NAME, "Fish River Island II"),

.1dent = "MinnowBoard",

{

3
(void *)MINNOW_UARTCLK,

DMI_MATCH(DMI_BOARD_NAME, "MinnowBoard"),

1 &
(lntel
13/36 ELC-E = Edinburgh = 2013

14/36

MinnowBoard: Ethernet PHY

* Software configured 2ns TX Clock delay
* Aggressive power saving, must be woken up

/* Wake up the PHY */
gpio_set value(13, 0);
usleep_range(1250, 1500);
gpio_set value(13, 1);
usleep_range(1250, 1500);

/* Configure 2ns Clock Delay */

pch_gbe phy read reg miic(hw, PHY_AR8031 DBG OFF, &mii_reg);
pch_gbe_phy write_reg_miic(hw, PHY_AR8031_DBG_OFF, PHY_AR8031_SERDES);
pch_gbe phy read reg miic(hw, PHY_AR8031 DBG DAT, &mii_reg);

mii_reg |= PHY_AR8031 SERDES_TX_CLK DLY;

pch_gbe phy write reg miic(hw, PHY_AR86031 DBG DAT, mii_ reg);

/* Disable Hibernate */

pch_gbe_phy write_reg miic(hw, PHY_AR8031_DBG_OFF, PHY_AR8031_ HIBERNATE);
pch_gbe phy read reg miic(hw, PHY_AR8031 DBG DAT, &mii_reg);

mii_reg &= ~PHY AR8031 PS HIB EN;

pch_gbe phy write reg miic(hw, PHY_AR86031 DBG DAT, mii reg);

ELC-E = Edinburgh = 2013

MinnowBoard: Ethernet PHY

* How do vou identify the PHY?
* RGMIl read
* But you can't read yet because it's asleep...

* How do vou identify the platform?
- SMBIOS
* Bevicetree
* AEP (actually, this could work well)
* PCl Subsystem ID (Already PCl Enumerated)

* How do you describe the hardware?
- Beard-Hleplatferm-functions (REJECTED)

* Platform init routine and private driver data per platform
* Next Steps: PHYLIB

ELC-E = Edinburgh = 2013

MinnowBoard: Ethernet PHY

+static struct pch _ghe privdata pch _ghe minnow privdata
.phy_tx clk delay = true,
.phy disable hibernate = true,
.platform_init = pch_gbe minnow_platform init,

static DEFINE _PCI _DEVICE TABLE(pch gbe pcidev_id) = {
{.vendor = PCI_VENDOR ID INTEL,
.device = PCI_DEVICE ID INTEL IOH1 GBE,
.subvendor = PCI_VENDOR ID CIRCUITCO,
.subdevice = PCI_SUBSYSTEM ID CIRCUITCO MINNOWBOARD,
.class = (PCI_CLASS NETWORK_ ETHERNET << 8),
.class _mask = (OxFFFF00),
.driver data = (kernel _ulong_ t)&pch gbe minnow privdata
}
{.vendor = PCI_VENDOR ID INTEL,
.device = PCI_DEVICE_ID INTEL_IOH1 GBE,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY ID,
.class = (PCI_CLASS NETWORK_ ETHERNET << 8),

+
+
+
+
+
+
+
+

+static int pch_gbe minnow platform init(struct pci dev *pdev) { ... }
+static int pch_gbe phy tx clk delay(struct pch _gbe hw *hw) { ... }
+int pch_gbe phy disable hibernate(struct pch _gbe hw *hw) { ... }

L]
(lntel
LYE]S) ELC-E = Edinburgh = 2013

MinnowBoard: Ethernet MAC

No EEPROM for Ethernet Address
* Reduced cost
* Use-onefrom-thelocalallocationpoel
* Where should we store the Ethernet Address?
« EHVar
* PCl reqgisters
The first implementation used EFI Vars
* Not quite as horrible as you might think

Final solution was done in firmware to read a fixed location
from the SPI flash and populate the PClI MAC register

* No driver changes required!

ELC-E = Edinburgh = 2013

Agenda

* Lessons Learned

ELC-E = Edinburgh = 2013

Lessons: Platform

A “Platform” is a reusable building block
The less it changes, the more reusable it is
* Reduces time-to-market

X86 has a well established platform

* Consider the number of systems current Linux Distributions support
on the same Linux kernel

* This must be preserved and upheld

ELC-E = Edinburgh = 2013

Lessons: Complexity

* Core kernel
* Simple primitives
* Complex algorithms

* Drivers
* Simple algorithms
* Complex set of primitives

ELC-E = Edinburgh = 2013

Lessons: The Front End

* Many |A products closely follow a reference design
* High confidence in reference design
* Can lead to inflexible driver implementations

* |f you have input into the design phase
* Consider existing device driver support

* Component selection
* Which PHY to use with a given MAC?

* Layout and configuration

ELC-E = Edinburgh = 2013

Lessons: Identification and Description

* The problem can be reduced to:
* |dentification
* Description

* |dentification

* Vendor/Product IDs
* PCl Subsystem ID

* Firmware (ACPI, DT)
* SMBIOS

* Description
* PCI Config or Registers (USB?)
* Hardcoded by ID
* Firmware (ACPI, DT)

ELC-E = Edinburgh = 2013

Lessons: It's Not About You!

Reduce long-term maintenance
* Avoid board-files, reuse existing platform drivers

* Avoid creating evil vendor trees
Don't lock your customers to a specific kernel version
Avoid creating unnecessary driver dependencies

* pch_gbe and minnowboard board-files

* Use device meta-data rather than a new device ID to
distinguish between functionally equivalent devices

* Such as UART-to-USB devices
Simplify existing Linux distribution support
* Stable trees and distributions will readily pull in device IDs

* Reusable device IDs are even better

ELC-E = Edinburgh = 2013

Lessons: It's Not About You!

“If you're a company that thinks your tiny change to the kernel
is what gives you a competitive edge, you’'ll probably be facing
economic problems. You'd be much better off worrying about
making the best damn hardware for the lowest price.”

-- Linus Torvalds, LinuxCon Europe, 2013

ELC-E = Edinburgh = 2013

Agenda

* MinnowBoard Take 2

ELC-E = Edinburgh = 2013

Take 2: GPIO Revisited

* New approach based on Lessons Learned

No Board-Files
* No new files at all

* Reuse existing code
* Or at least set the stage to do so in the future

Support the platform
* ACPI device identification and description

ELC-E = Edinburgh = 2013

Take 2: Identification and Description

* ACPI 5.0 does:

* Assign device IDs to pseudo devices

* Adding ACPI enumeration to PCl devices is trivial and links the pseudo
device with the underlying physical device in the in-kernel device tree

* |dentify GPIO resources (pins, address, interrupt lines)

* ACPI 5.0 does not (currently):

* Provide a standard mechanism to describe arbitrary device attributes
* Keybinding, default trigger, number of queues, etc.
* Some vendors currently invent their own

* Acknowledgements:
* Rafael Wysocki, Mika Westerberg, Mathias Nyman, Robert Moore
* H. Peter Anvin, Len Brown, Mark Doran
* Linus Walleij, many more....

ELC-E = Edinburgh = 2013

Take 2: ACPI DSDT Example

Define a pseudo device LEDS below the LPC device
Create the hardware ID “MNWO0003"

Add GPIO 10 and 11 (relative to the LPC device) to LEDS
The kernel can identify, but has no mapping information

Scope (\ SB.PCIO.LPC) {
Device (LEDS) {
Name (_HID, "MNWOOOG3")
Method (_CRS, 0, Serialized) {
Name (RBUF, ResourceTemplate () {
GpioIo (Exclusive, PullDown, 0, 0, IoRestrictionOutputOnly,
“_SB.PCIO.LPC", 0, ResourceConsumer,,)

{

}
GpioIo (Exclusive, PullDown, 0, 0, IoRestrictionInputOnly,

“_SB.PCIO.LPC", O, ResourceConsumer,,)
{

}

})
Return (RBUF)

10 // SUS 5

11 // SUS6

1 &
(lntel
28/36 ELC-E = Edinburgh = 2013

Take 2: ACPI Packages and Properties

* Packages are non-typed arrays

* Packages can nested

* Packages can easily implement dictionaries

* A PROPERTIES method could return a dictionary

Package() { <VALUEl>, <VALUE2> }

Package() {
Package() { <VALUEl>, <VALUE2> }
Package() { <VALUEl>, <VALUE2> }
}

Package() {
Package() { “String”, “Hello World” }
Package() { “Number”, 10 }
Package() { “List”, Package() { 1, 2 } }
}

Method (PROPERTIES, 0, NotSerialized) {
Return (Package() {

Package() { "Key", “Value” }
})
}

1 &
(lntel
29/36 ELC-E = Edinburgh = 2013

Take 2: ACPI _PRP Method Proposal

* A standardized mechanism is needed

* Consider an ACPI reserved method _PRP
* Optionally implemented per device

Scope (\ SB.PCIO.LPC) {
Device (LEDS) {
Name (_HID, "MNWOOOG3")
Method (_CRS, 0, Serialized) { ... }

Method (PRP, 0, NotSerialized) {
Return (Package() {
Package() { "label", Package (2) { "minnow led0", "minnow ledl" }},
Package() { "linux,default-trigger", Package (2) { "heartbeat", "mmc0" }},
Package() {"linux,default-state", Package (2) { "on", "on" }},
Package() { "linux,retain-state-suspended", Package (2) { 1, 1 }},
})

(5\.
~r
L

30/36 ELC-E = Edinburgh = 2013

Take 2: ACPI Device Enumeration

* Documentation/acpi/enumeration.txt
* Add ACPI ID to drivers/acpi/acpi_platform.c
* Add ACPI enumeration to pseudo-bus driver

drivers/acpi/acpi_platform.c:
static const struct acpi_device id acpi_platform_device ids[] = {
{ "PNPOD40" },
+ { "MNwWO002" },
+ { "MNWO0O3" },
{1}
}i
drivers/leds/leds-gpio.c:
+#ifdef CONFIG_ACPI
+static inline struct gpio leds priv *
+gpio_leds create acpi(struct platform_device *pdev)

+{ ... }

+static const struct acpi device id acpi gpio leds match[] = {
+ { "MNwWO0OO3" },

+ {},

+};

static struct platform driver gpio led driver = {
+ .acpi_match_table = ACPI_PTR(acpi_gpio leds match),

(:Eg;
~r
L

31/36 ELC-E = Edinburgh = 2013

32/36

Take 2: ACPI Device Description

New set of ACPI APlIs
Populate the platform_device with the ACPI Properties

int acpi dev get property <TYPE>(struct acpi_device *adev, const char *name, <TYPE> *value)
int acpi_dev _get property array <TYPE>(struct acpi_device *adev, const char *name,
<TYPE> *values, size t nvalues)

drivers/leds/leds-gpio.c:
static inline struct gpio leds priv *
gpio_leds create acpi(struct platform device *pdev) {
trigger = kcalloc(nleds, sizeof(char *), GFP_KERNEL);
error = acpi dev_get property array string(adev, "linux,default-trigger",
trigger, nleds);

for (i = 0; i < nleds; i++) {
struct gpio_led led = {};

led.gpio = acpi get gpio by index(dev, i, NULL);
led.default trigger = trigger[i];
}

return priv;

ELC-E = Edinburgh = 2013

33/36

Take 2: ACPI MinnowBoard Example
* 3.12.0-rc5 + Minnow ACPI V2

cat /sys/kernel/debug/gpio

GPIOs 0-4, platform/sch _gpi0.33158, sch gpio core:
gpio-0 (minnow_btn0) in hi

gpio-1 (minnow btnl) in hi
gpio-2 (minnow_btn2) in hi
gpio-3 (minnow_btn3) in hi

GPIOs 5-13, platform/sch _gpio.33158, sch gpio resume:
gpio-10 (minnow_led®) out lo
gpio-11 (minnow ledl) out hi
gpio-13 (minnow_phy reset) out hi

ELC-E = Edinburgh = 2013

Agenda

* Next Steps

ELC-E = Edinburgh = 2013

Next Steps

* Formalize and propose the ACPI _PRP method
* Consider existing implementations
* One more layer of Linux device property abstraction

* Abstract Open Firmware (DT) and ACPI (_PRP), allowing pseudo-device
drivers to have a single firmware device property API

Lavered ACPI SSDT tooling

* Current mechanisms replace rather than augment the firmware
provided DSDT

Generic ACPI platform device HIDs
* LNX**** or just more PNP**** IDs

* Opening up firmware
* At the very least we need to be able to rebuild it with modifications

ELC-E = Edinburgh = 2013

Comments / Questions

[* *["7

(Come see us at the Intel booth for a “Chalk Talk")

ELC-E = Edinburgh = 2013

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

