

Config impact examination Status and further works

July 21st, 2006 IKEDA, Munehiro

m-ikeda@ds.jp.nec.com

Contents

- Background
- Project overview
- Examination tool
- Examining result
 - Conditions
 - Result about size
 - Result about memory usage
- Further works
- Appendix : resources

Background

Facts

- Embedded engineers LOVE small kernel.
- To make small kernel,
 you need to configure your kernel very carefully.
- Num of config items > 3000

Issues

- Kernel size and memory usage impacts of config items are unknown.
- Trial-and-error approach is impractical.
- Trend of kernel footprint along versions is unknown.
- * Reference: size of tar.bz2 file
 - 2. 6. 0 : 32. 5 [MB]
 - 2.6.8 : 34.8[MB]
 - 2. 6. 15 : 38. 9 [MB]

Project overview

Objective

 Making clear impact of config items for kernel size and memory usage

Goal

- Develop and provide examination tool
- Provide data
 - size impact of config items
 - Derived from kernel file size measurement
 - Memory usage impact of config items
 - Derived from memory usage measurement just after boot

Examination tool (1)

Automatic measurement

- Make kernels whose enabled config items are minimal items + one of target items
- Measure file size of kernel image.
- Install, reboot, and measure memory usage just after booting.
- Calculate impacts of config items shown as below.

Examination tool (2)

Result visualization

- Provide examination results graphically.
 - Impacts for static size
 - Impacts for memory usage
- Condition comparison is available.
 (kernel versions, architectures, etc.)
- Inspired by Bloatwatch

```
( => demo )
```


Examining conditions

Minimal config items for minimal kernel

- Minimal configs just only to boot are enabled.
- UP kernel
- Target config items: About 200
 - Select popular items for embedded.
 - Except for items which have global effect.
 (ex : smp, pm, printk support etc.)
- Target versions
 - -2.6.0, 2.6.4, 2.6.8, 2.6.10, 2.6.12.6, 2.6.15.6
- Target architectures
 - i386, ARM

Examining result about size (1)

Minimal kernel

- Size increase is about 10% from 2.6.0 to 2.6.15

	vmlinux	bzlmage		
2.6.0	1126[KB]	479[KB]		
2.6.15.6	1290[KB]	532[KB]		
increase	164[KB]	53[KB]		

Note(1) : gcc 3.3.5, binutils 2.15

Examining result about size (2)

Large items

- Network features have larger impact.
- Case study: TCP/IP support kernel
 - vmlinux size : 1700[KB]
 - = 1300(minimal) + 250(INET) + 150(NET)
 - ... Network features' weight is 1/4 of total.

Note(1): gcc 3.3.5, binutils 2.15

Note(2): Some config items are not completely isolated.

INET += IP_FIB_HASH + TCP_CONG_BIC

NFS_FS += LOCKD + SUNRPC IPV6 += CRYPTO + CRYPTO_MD5

Examining result about size (3)

Bloating items

 Increase of NTFS_RW and CIFS may be caused by their active developments.

 Increase of DVB_BUDGET seems to be caused Code lines

by changing of config dependency.

			*.C	*.h	*.C	*.h
		2.6.4	1433	5	14309	3922
	Size bloating items (i386)		4048	424	16905	4150
200	In pact for vm linux size	2.6.10	7634	622	19196	4304
⊋ 180						

Note: gcc 3.3.5, binutils 2.15

Examining result about memory usage (1)

Minimal kernel

- Memory usage hasn't increased from 2.6.0 to 2.6.15, stayed about 2.7[MB].
- Peak at 2.6.8 is observed. (needs analysis)

Note(1): gcc 3.3.5, binutils 2.15

Note(2): Target machine Pentium IV 2.2GHz RAM 256MB/HD 40GB

Examining result about memory usage (2)

Large items

- JFFS2, network features and SCSI have large impact for memory usage.
- Case study: JFFS2 support kernel
 - Total memory usage: 3050[KB]
 - = 2750(minimal) + 300(JFFS2)
 - ... JFFS2 has 10% weight of total.

Note(1) : gcc 3.3.5, binutils 2.15

Note(2) : Target machine

... Pentium IV 2.2GHz/RAM 256MB/HD 40GB

Examining result about memory usage (3)

Bloating items

- Memory impact of CIFS, KEYBOARD_ATKBD have been increased.
- I guess the increase of CIFS is caused by active development.
- The increase of ATKBD is curious.

Note(1): gcc 3.3.5, binutils 2.15 Note(2): Target machine Pentium IV 2.2GHz RAM 256MB/HD 40GB

Further works

Periodic examination

- Tune the tool a little bit for automatic examination.
- Provide and publish data periodically.
- CELF Open Test Lab would be the best facility.
 - Providing data from 2 perspectives would be great.
 - -Bloatwatch
 - » data per sub-system and symbol
 - ⇒ mainly fits for kernel developers' perspective
 - -KconfigSize
 - » data per config item
 - ⇒ mainly fits for embedded engineers' perspective

Appendix: resources

KconfigSize

 http://tree.celinuxforum.org/CelfPubWiki/KernelConfigWeight (slightly outdated, will be reorganized soon)

Bloatwatch

- Very smart kernel size measurement tool
- Developed by Matt Mackall
 - source : http://selenic.com/repo/bloatwatch
 - actually works on : http://testlab.celinuxforum.org/

Thank you!