
How to get your
Devicetree schema
bindings accepted in less
than 10 iterations

Krzysztof Kozlowski
Qualcomm Landing Team, Linaro
krzysztof.kozlowski@linaro.org

September, 2022

https://www.linaro.org/

● Krzysztof Kozlowski
● I am the co-maintainer (with Rob) of Devicetree bindings in Linux kernel
● I also maintain other Linux kernel pieces

○ Memory controller drivers
○ NFC subsystem
○ Samsung Exynos SoC architecture

● I work for Linaro
○ Qualcomm Landing Team / Linaro Developer Services
○ Upstreaming Qualcomm ARM/ARM64 SoCs

Introduction

Build, Test and
deploy faster

Arm Software
expertise

Specialists in
TEE on Arm

Continuous Integration
through LAVA

We support every aspect of
product delivery, from building
secure board support
packages (BSPs), product
validation and long-term
maintenance.

As part of Linaro, Developer
Services has some of the
world’s leading Arm
Software experts.

We offer continuous
integration (CI) and
automated validation through
LAVA (Linaro’s Automation &
Validation Architecture)

We specialize in security and
Trusted Execution
Environment (TEE) on Arm.

Linaro Developer Services
Linaro Developer Services helps companies build, deploy and maintain products on Arm

For more information go to: https://www.linaro.org/services/

https://www.linaro.org/services/

Agenda
1. Introduction
2. Bindings and DT schema - short intro
3. Generic rules for bindings
4. DT schema - usage
5. Dos and Don’ts
6. Reusable patterns (reference)
7. References
8. Q&A

Disclaimer
● Devicetree and its bindings are not necessarily tied to specific system, however the

talk focuses on Linux kernel Devicetree bindings and its DT schema format
● The guidelines here are based on my experience - received and given reviews
● Due to time constraints material presented here is simplified, thus when it

contradicts Linux kernel documentation or DT bindings maintainer decision, the
latter takes precedence

Bindings and Devicetree schema
● While Devicetree sources (DTS) describe the hardware, the bindings describe the

rules how DTS should be constructed
● Therefore the bindings also reference the hardware, not the chosen software

implementation (e.g. Linux drivers)
○ Documenting the interface for different implementations

● Previously, bindings in Linux kernel were written in text, without any specific format
● Devicetree schema (DT schema) is the new format which allows:

○ Validation of the bindings itself against meta-schema
○ Validation of the DTS against bindings

● All new bindings must come in DT schema
● Changes to existing TXT bindings:

○ Adding compatibles allowed
○ Adding properties not allowed, please convert the bindings to DT schema first

Example DTS and DT schema
spi {

#address-cells = <1>;

#size-cells = <0>;

adc@0 {

compatible = "adi,ad7291";

reg = <0>;

vref-supply = <&adc_vref>;

};

};

(...)

title: AD7291 8-Channel, I2C, 12-Bit SAR ADC with Temperature Sensor

description: |

 Analog Devices AD7291 8-Channel I2C 12-Bit SAR ADC with Temperature
Sensor

properties:

 compatible:

 const: adi,ad7291

 reg:

 maxItems: 1

 vref-supply:

 description: The regulator supply for ADC reference voltage.

required:

 - compatible

 - reg

additionalProperties: false

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● Most of the rules are already covered by
https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-bindings.html

● Just like DTS, the Devicetree bindings describe the hardware, not the software
implementation (e.g. Linux kernel drivers)
○ Bindings are independent of implementation
○ Might be used in several other projects
○ Avoid using Linuxisms (Linux-specific subsystem naming)

● Dual license (GPL-2.0-only OR BSD-2-Clause)
● Bindings filename based on the compatible

○ vendor,device.yaml
○ vendor,soc-ip.yaml

● Bindings headers are also part of the bindings
○ Dual license
○ vendor,device.h

● Bindings changes should not be mixed with a driver code in one patch
○ Sent bindings as separate patches, first in the patchset

Generic rules for bindings

https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-bindings.html

● Compatible
○ Should be specific - no wildcards
○ No bus-suffixes

 - Bad: vendor,foo-spi
 - Good: vendor,foo

● syscon and simple-mfd require device-specific compatible as first one
○ "qcom,sc7280-tcsr", "syscon";
○ "qcom,qcs404-imem", "syscon", "simple-mfd";

● simple-mfd
○ “simple-mfd” means “there's nothing in this node that any of the child nodes depend on”
○ Usually means device is simple, e.g. does not have any properties except children

Generic rules for bindings - compatibles

● Focus on hardware characteristics and features, instead of specific device
programming model
○ Good:

■ regulator-min-microvolt
(which uses uV as units)

○ Bad:
■ Using device register values to encode logical unit:

Generic rules for bindings

regulator-min-voltage:
 $ref: /schemas/types.yaml#/definitions/uint32
 enum:
 - 1 # 0.2 V
 - 2 # 0.3 V
 - 3 # 0.4 V
 - 4 # 0.5 V

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● There is a guide with an example:
○ https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-schema.html

● DT schema is written in YAML (using json-schema vocabulary)
● Typical usage:

DT schema - usage

pip3 install dtschema

test the bindings:
make dt_binding_check DT_SCHEMA_FILES=trivial-devices.yaml

check all the DTSes against given bindings:
export ARCH=arm64 … # cross compile for your arch
make dtbs_check DT_SCHEMA_FILES=trivial-devices.yaml

check one DTS against given bindings:
make DT_SCHEMA_FILES=trivial-devices.yaml CHECK_DTBS=y qcom/sm8450-hdk.dtb

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-schema.html

Dos and Don’ts

● If there is standard property - use it
○ Look for existing ones in:

 - https://github.com/devicetree-org/dt-schema/tree/main/dtschema/schemas
 - Documentation/devicetree/bindings/gpio/gpio-consumer-common.yaml
 - Other bindings, especially common parts

● Custom properties require:
○ Vendor prefix (foo,property-name)
○ Type ($ref), unless standard unit (see later)
○ Description - describe the feature or hardware, not the Linux driver behavior

Dos and Don’ts - properties

 qcom,avg-samples:

 $ref: /schemas/types.yaml#/definitions/uint32

 description:

 Number of samples to be used for measurement.

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

https://github.com/devicetree-org/dt-schema/tree/main/dtschema/schemas

● No need for type ($ref) for properties:
○ With standard unit suffixes do not need a type ($ref)

dtschema/schemas/property-units.yaml
○ Described by core schema

Dos and Don’ts - no need for types

 entry-latency-us:

 description:

 Worst case latency in microseconds required to enter

 the idle state.

 a2vdd-supply:

 description: A 1.8V supply that powers up the A2VDD pin.

 interrupts:

 maxItems: 1

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

https://github.com/devicetree-org/dt-schema/blob/main/dtschema/schemas/property-units.yaml

● Items of reg, clocks, dmas, interrupts, resets and others are always strictly ordered
○ The xxx-names (e.g. clock-names) are only helpers
○ Don’t use clk/irq suffix in names: “tx” instead of “txirq”
○ Both of these properties (xxx and xxx-names) must have strict constraints on size and

order of items
● Declare the items via a list with descriptions

Dos and Don’ts - arrays

 clocks:

 items:

 - description: 24 MHz reference

 - description: bus clock

 clock-names:

 items:

 - const: ref

 - const: bus

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● If minItems==maxItems, only maxItems is enough (although not necessarily in
allOf:if:then block)

Dos and Don’ts - arrays continued

 reg:

 maxItems: 1

 resets:

 maxItems: 2

 description: phandles to the reset lines for both SATA bridges

 reset-names:

 items:

 - const: sata0

 - const: sata1

● Use maxItems:X for obvious cases (or if xxx-names describes the items)

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● Phandle to syscon device requires a vendor, descriptive name and a description
○ Bad:

Dos and Don’ts - syscon phandles

 syscon:

 $ref: /schemas/types.yaml#/definitions/phandle

 samsung,sysreg:

 $ref: /schemas/types.yaml#/definitions/phandle

 description: Phandle to System Register syscon

○ Good:

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● Best example:

Dos and Don’ts - syscon phandles continued

 samsung,sysreg:

 $ref: /schemas/types.yaml#/definitions/phandle-array

 items:

 - items:

 - description: phandle to System Register syscon node

 - description: offset of SW_CONF register for this controller

 description:

 The phandle to System Register syscon node for the same

 domain where this USI controller resides

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● additionalProperties and unevaluatedProperties control how other properties are
treated (the ones not mentioned in the current schema)

● Most cases: choose either additionalProperties or unevaluatedProperties and set it
to false

● If schema does not reference any other schema:

Dos and Don’ts - additional/unevaluated

properties:
 ...

required:
 ...

additionalProperties: false

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● If schema references other schema, you can list applicable properties from other
schema and do not allow anything else:

Dos and Don’ts - additional/unevaluated

allOf:

 - $ref: panel-common.yaml#

properties:

 backlight: true # coming from panel-common.yaml

 reset-gpios: true # coming from panel-common.yaml
 ...

required:
 ...

additionalProperties: false

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● Allow all fields from the other schema
○ This is preferred if the referenced schema is in general valid for your device and any of its

properties can be applicable, e.g. regulator.yaml

Dos and Don’ts - additional/unevaluated

patternProperties:

 "^LDO[1-3]$":

 type: object

 $ref: regulator.yaml#

 unevaluatedProperties: false

allOf:

 - $ref: panel-common.yaml#

properties:

...

unevaluatedProperties: false

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● Example is used to validate the DT schema
● Include useful DTS example(s)

○ …but not 10 examples with different only compatibles
● Use 2- or 4-space indentation for DTS example

○ 4-space is preferred, nicely aligns with the opening -|

Dos and Don’ts - examples

examples:
 - |

 adc@0 {

 compatible = "adi,ad7190";

 reg = <0>;

 };

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

● No “status=okay/disabled” in the examples
● No unnecessary consumer examples inside provider bindings (e.g. clock controllers)

 - In that context, the usage of consumer is obvious
 - Not related to particular provider

● Device node names should be generic (“adc”, not “ad7190”)
 - Devicetree spec: 2.2.2. Generic Names Recommendation

Dos and Don’ts - examples continued

https://devicetree-specification.readthedocs.io/en/latest/chapter2-devicetree-basics.html#generic-names-recommendation

Reusable patterns (reference)

Property required and present only in one variant:
allOf:

 - if:

 properties:

 compatible:

 contains:

 const: vendor,soc2-ip

 then:

 required:

 - foo-supply

 else: # If otherwise the property is not allowed:

 properties:

 foo-supply: false

Reusable patterns (reference)

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/example-schema.yaml#L212

Excluding properties, but one is required:
oneOf:

 - required:

 - reg

 - required:

 - size

Reusable patterns (reference)

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/reserved-memory/reserved-memory.yaml#L91

Excluding properties and none is required:
allOf:

 - if:

 required:

 - s5m8767,pmic-buck2-uses-gpio-dvs

 then:

 properties:

 s5m8767,pmic-buck3-uses-gpio-dvs: false

 - if:

 required:

 - s5m8767,pmic-buck3-uses-gpio-dvs

 then:

 properties:

 s5m8767,pmic-buck2-uses-gpio-dvs: false

Reusable patterns (reference)

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/mfd/samsung,s5m8767.yaml#L155

Array of integers with some constraints (e.g. min/max values):
properties:
 vendor,int-array-variable-length-and-constrained-values:

 description: Array might define what type of elements might be used
 $ref: /schemas/types.yaml#/definitions/uint32-array

 minItems: 2

 maxItems: 3

 items:

 minimum: 0

 maximum: 8

Reusable patterns (reference)

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/example-schema.yaml#L165

Reusable patterns (reference)
Variable length arrays (per variant):
properties:
 clocks:

 minItems: 2

 maxItems: 4

 clock-names:

 minItems: 2

 maxItems: 4

...

allOf:

 - if:

 properties:

 compatible:

 contains:

 const: foo,bar

 then:

 properties:

 clocks:

 minItems: 4

 clock-names:

 items:

 - description: ...

SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)

https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/clock/samsung,exynos7-clock.yaml#L38

● Dependency between properties
● Restricting property based on other one
● Variable length of array - last interrupt optional
● Phandle to syscon with offset
● uint32 matrix, variable length of two-items tupples
● $ref depending on compatible

Reusable patterns (reference)

https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/example-schema.yaml#L189
https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/example-schema.yaml#L224
https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/example-schema.yaml#L91
https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/soc/samsung/exynos-usi.yaml#L42
https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml#L278
https://elixir.bootlin.com/linux/v5.19/source/Documentation/devicetree/bindings/mfd/google,cros-ec.yaml#L152

● Writing bindings:
https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-bindings.html

● Writing DT schema:
https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-schema.html

● Example schema:
https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-schema.html#
example-schema

● Standard property types/suffixes:
https://github.com/devicetree-org/dt-schema/blob/main/dtschema/schemas/prope
rty-units.yaml

● dt-schema core schemas:
https://github.com/devicetree-org/dt-schema/tree/main/dtschema/schemas

References

https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-bindings.html
https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-schema.html
https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-schema.html#example-schema
https://www.kernel.org/doc/html/latest/devicetree/bindings/writing-schema.html#example-schema
https://github.com/devicetree-org/dt-schema/blob/main/dtschema/schemas/property-units.yaml
https://github.com/devicetree-org/dt-schema/blob/main/dtschema/schemas/property-units.yaml
https://github.com/devicetree-org/dt-schema/tree/main/dtschema/schemas

Introducing Linaro

Linaro collaborates with
businesses and open

source communities to:

● Consolidate the Arm code
base & develop common,
low-level functionality

● Create open source
reference implementations
& standards

● Upstream products and
platforms on Arm

Why do we do this?

● To make it easier for
businesses to build and
deploy high quality and
secure Arm-based products

● To make it easier for
engineers to develop on Arm

Two ways to collaborate
with Linaro:

● Join as a member and work
with Linaro and collaborate
with other industry leaders

● Work with Linaro Developer
Services on a one-to-one
basis on a project

1

2

For more information go to: www.linaro.org

http://www.linaro.org

Linaro membership collaboration

Thank you
Questions?

