What are Interrupt
Threads and How Do
They Work?

Interrupt Threads in Linux

Mike Anderson
Chief Scientist
The PTR Group, Inc.

mailto: mike@theptrgroup.com

. C ight (c) 2009, Th
http:/ /www.theptrgroup.com opyright () 2005, The

What We Will Talk About

#What is latency?
#Sources of latency in Linux
#The Molnar RT Patch for the Linux kernel

#Executing interrupt code in a thread
context

#Interrupt threads in Linux
#Some notional performance comparisons
#Summary

IntThreads-ELC-SF-2 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

A Definition of Latency

#Latency can best be described as the
difference in time between when an event
is signaled and when code starts to run

#Operating systems have:
» Scheduling latency

» Interrupt latency
» And more...

#Because we deal with the real world, we
must deal with latency

» The real world is not a very deterministic
place

IntThreads-ELC-SF-3 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

Scheduling Latency

#Scheduling latency is the amount of time
between when a high-priority thread
becomes ready to run and when it gets
the CPU

#Affected by:
» Disabling the scheduler (BKL)
» Non-preemptible system calls

IntThreads-ELC-SF-4 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Interrupt Latency

#The amount of time between when an
interrupt is signaled and when the ISR
begins to execute

#Affected by:

» Long-duration ISRs
» Disabling interrupts
» Prioritization of interrupts

IntThreads-ELC-SF-5 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

Taxonomy

#Deterministic execution

» This means that code takes the same amount of time
to run every time ' N
e The holy grail of real-time systems :

Real-time computing
» Computing with a deadline

+#Soft real time

» Deadlines are squishy
e Executing after the deadline has diminishing value

+#Hard real time

» If you miss the deadline, people get hurt or data is
lost permanently

IntThreads-ELC-SF-6 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — ' —4

Real-time isn’t Fair

#Embedded RTOS developers know that
real-time applications are decidedly
unfair

#In fact, many RTOSes don’t support
round-robin scheduling very well

» Preemptive, priority-based is the scheduler
of choice

e That’'s SCHED_FIFO to us Linux folks

#This unfairness requires a different
mindset from traditional Linux

» Can take some getting used to

IntThreads-ELC-SF-7 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Preemption in the Linux Kernel

#Early Linux kernels were almost totally
non-preemptible

#Preemption has been gradually phased
into the Linux kernel over several years

#The “preemptible kernel” patch came in
late in the 2.4 kernel series

» Addressed many performance issues

IntThreads-ELC-SF-8 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

Preemption in 2.4.17

AL R O M0 B I A L M e

Source: linuxjournal.com

MP3 without Preemption MP3 with Preemption

IntThreads-ELC-SF-9 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K PTR

2.6 Kernel R-T Regression

#When the 2.6 kernel was first released,
performance dropped to below 2.4 levels
» Critical regions of code were not preemptible
e Spinlocks were being held too long

#This caused a lot of developers to stick
with the 2.4 kernel for longer than
everyone would have liked

IntThreads-ELC-SF-10 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Fully Preemptible Kernel

#The low-latency desktop
(PREEMPT_DESKTOP) work fixed most of
the regressions in 2.6 responsiveness

» However, full preemption is still not the
default in the mainline kernel

e Voluntary preemption is the default

#However, making the kernel more
responsive means we’re likely sacrificing
total throughput

» Preemption leads to more context switches

IntThreads-ELC-SF-11 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Audio Community Wanted More

#Even though the PREEMPT_DESKTOP
option enabled soft real-time
performance, the audio community
wanted determinism

» Needec

#This leac

to maintain sampling rates
to the development of the

RT_preempt patch set
» A.k.a. Molnar real-time patches

IntThreads-ELC-SF-12 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Linux Preemption Evolution

Kernel 2.0

Kernels
2.2-2.4

Preemptible
Kernel 2.4
Kernel 2.6

Real-Time
Kernel 2.6

B Preemptible B Non-Preemptible

IntThreads-ELC-SF-13 Copyright (c) 2009, The PTRGroup, Inc.

RT-Patches not Mainline Yet

#As of 2.6.28.7, the R-T patches are still not
mainline

» You can download them from kernel.org but not all
kernels are supported

» Or, use a distribution that integrates the patch set for
you
#Beware: not all distros are created equal

» Ubuntu 8.10 had an R-T kernel for 2.6.27 that only
worked in uniprocessor mode

#Technically, 2.6.27 & 2.6.28 were skipped by
R-T patch community
» Focusing on 2.6.29 currently

IntThreads-ELC-SF-14 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Selecting Preemption Models

Option e

| Opticn |

= General setup
Configure standard kernel features (for small syste
Linux Trace Toolkit
Enable loadable module support
= Enable the block layer
10 Schedulers
= System Type
Tl OMAP Implementations
= Bus support
OPCCard (PCMCIAfCardBus) suppork
Boot options
CPU Freguency scaling
CPU idle PM support
Floating peint emulation
Userspace binary formats
= Power management options
OMAP power management options
Metworking
= Device Drivers
Generic Driver Options
O Connector - unified userspace =-> kernelspace lin
= HEMemory Technology Device (MTD) support
RAM/ROM/Flash chip drivers
Mapping drivers for chip access
Self-contained MTD device drivers
MAND Device Support
O OneNAND Device Support
UBI - Unsorted block images
O Parallel port support
= Block devices
Misc devices

IntThreads-ELC-SF-15 Copyright (c) 2009, The PTRGroup, Inc.

= Tickless System (Dynamic Ticks)
High Resolution Timer Support
= Preempticn Mode
@] No Forced Preemption (Server)
O Voluntary Kernel Preemption (Desktop)
O Preemptible Kernel (Low-Latency Desktop)
@ Complete Preemption (Real-Time)
Thread Softirgs
Thread Hardirgs
= RCU implementation type:
= Preemptible RCU
Enable priority boosting of RCU read-side critical sections (NEW)
=] Enable tracing for RCU - currently stats in debugfs
= = Use the ARM EABI to compile the kernel
O Allow old ABI binaries to run with this kernel (EXPERIMENTALY)
= Memory model
@ Flat Memory
O 64 bit Memory and 10 resources (EXPERIMENTAL)
O Timer and CPU usage LEDs

Mo Forced Preemption (Server) (PREEMFT MOMNE)

This is the traditional Linux preemption model geared towards
throughput. It will still provide good latencies most of the
time but there are no guarantees and occasional long delays
are possible.

Select this option if you are building a kernel for a server or
scientific/computation system, or if you want to maximize the
raw processing power of the kernel, irrespective of scheduling
latencies.

N, AT~

What R-T Patches Bring

#The major features of the R-T patch set are:

» Spinlocks are replaced by PI-Mutexes
e Support for priority inheritance
e raw_spinlock() implements old spinlock behavior

» Critical sections protected by spinlock_t and rwlock_t
are now preemptible

» Converted old Linux timer API into separate
mechanisms for high-resolution and normal Linux
kernel timers

e Enables high-resolution POSIX timers in user space as well

» Runs interrupt handlers in preemptible thread

context
e Both hard and soft IRQs can run in thread context

IntThreads-ELC-SF-16 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Priority Inversion

#A major problem for Linux and real-time
work was something called priority
Inversion

» Fixed with PI-Mutex

High

Medium

Low

IntThreads-ELC-SF-17

take mutex i

I I
—I oooooooo I_
EE—
High blocked

due to medium

OOOOOOOOOOOOOOOOOOOOOOOO

Copyright (c) 2009, The PTRGroup, Inc.

High

Medium

Low

release mutex

i A i
|
[}
|
— OOOOOOOOOOOOOOOOOOOOOOOOOO I
[}
[}
|
v
..............................
>
Low inherits Low goes
high’s prio back to orig
prio

N, AT~

Breaking Training

#We’'ve been trained to think that
interrupt code must be:

» Fast
» Atomic
» Run in a special context
#But, what processor instructions
*must® be run in interrupt context?

» Return from interrupt
e E.g., PPC RFI or x86 IRET

» That’s about it
+# OK, what about fast and atomic?

IntThreads-ELC-SF-18 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

How Fast is Fast Enough?

+# Well, it depends...

» Do we have a buffer that will be overrun?

» When does the hardware interrupt get re-
enabled?

+# The kernel NAPI interface shows us that
we can reduce the number of interrupts
and still have excellent service
» Buffering may be automatic and in hardware
+# If we have to re-arm the interrupt in our
ISR, then it’s likely that the re-arm can
wait until we get to it
» Will data be lost? Is it important?

IntThreads-ELC-SF-19 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \l — ' —4

OK, How about Atomic?

#In Linux, if interrupts are marked as
“slow” we can have interrupts
Interrupting interrupts

» Our interrupt stack must handle worst
case nesting

#It might be important to prioritize
Interrupts

» We may want highest priority interrupt
to run to completion

» Unfortunately, many buses don’t
support this

Source: deskpicture.com

IntThreads-ELC-SF-20 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Interrupt Latency Reduction

#We've learned to use bottom halves to
reduce interrupt latency

» Lengthy copy operations can be moved to
SoftIRQ/tasklet/work queue to re-enable
interrupts while the copy proceeds

#Work queues are kernel threads

» They’re scheduled, have priorities and can
sleep

#The ISR top half can be a single
schedule_work() call

» This makes the top half deterministic

IntThreads-ELC-SF-21 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Scheduling Work

The Linux scheduler is O(1)
» Deterministic dispatch time =1 IE Y

Manicuris ts
*Him | Eim *Him | *Kim | Kim

¥ This means that the work queue will be EEaErE Tt

scheduled in constant time —e =
3 Since the work queue is a thread, it can ==
run as long as needed (SCHED_FIFO) S E——

» Highest priority wins with the scheduler =ty o 150 1207 s 12071230

Source: johnmh.com

This means we can use R-T priorities to
prioritize execution of bottom half

» This is something we didn’t have with
tasklets/softIRQs

IntThreads-ELC-SF-22 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — el —4

R-T Patch to the Rescue

#What the R-T patch does is to
institutionalize the work queue
idea

» All hardIRQs and softlIRQs execute in
high-priority kernel threads

#Highest priority wins
#Threaded hard and soft IRQs can
be disabled via kernel command
line or in /proc
» hardirg-preempt=0/1
» /proc/sys/kernel/hardirqg_preemption
» Similar options for softlIRQs

IntThreads-ELC-SF-23 Copyright (c) 2009, The PTRGroup, Inc.

L

Threads are Created Automatically

#You don’t have to do anything special to
run your code in a thread

» request_irg() call creates the thread and

includes your function
if (! (new->flags & IRQF NODELAY))
if (start irq thread(irqgq, desc))
return -ENOMEM;

#This code will pass your ISR to the
start_irg_thread function

» Creates a kernel thread that calls your ISR
code

IntThreads-ELC-SF-24 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

The start_irq_thread Call

static int start irq thread(int irq, struct irq desc *desc)
{
if (desc->thread || 'ok to create irq threads)
return O;

desc->thread = kthread create(do_irqd, desc, "IRQ-%d", irq);

if ('desc->thread) {
printk (KERN ERR "irqd: could not create IRQ thread %d!'\n", irq);
return -ENOMEM;

/*

*

An interrupt may have come in before the thread pointer was
* stored in desc->thread; make sure the thread gets woken up in
* such a case:
*/

smp_mb () ;

wake up process (desc->thread) ;

return O;

IntThreads-ELC-SF-25 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p ‘!'.‘r — el —4

View of Threaded IRQs

With the RT patch set enabled, the hard/softIRQs are
automatically run in kernel threads
» Kernel threads use the kernel’s API and share the address space

with drivers, the kernel etc.

-
[t
=2

B =l &n N & WK

IntThreads-ELC-SF-26

TID CLS RTPRIO
1 T5 -

2 T5 -

3 FF a9

4 FF 99

5 FF 50

6 FF 50

7 FF 50

8 FF 50

9 FF 50
18 FF 50
11 FF 50
12 FF 50
13 FF 50
56 FF 50
884 FF 50
922 FF 50
923 FF 50

g 19
-5 24
- 139
- 139
- 98
- 90
- 98
- 90
- 98
- 90
- 98
- 90
- 98
- 90
- 98
- 90
- 98

Copyright (c) 2009, The PTRGroup, Inc.

¢

oD DD DD DD DD DD @D D @@

e QR T R I IO I e R < R e O s I < s e s s s
oD DD DD D oD DD D Do oo

PRI P5R %CPU
8.

STAT COMMAND

55
S
S=
S
S=
S
S=
S
S=
S
S=
S
S=
S
S=
S
S=

init

kthreadd
migration/®
posix cpu timer
softirg-high/@
softirg-timer/0
softirg-net-tx/
softirg-net-rx/
softirg-block/@
softirg-tasklet
softirg-sched/0
softirg-hrtimer
softirg-rcu/0
IRQ-9

IRQ-8

IRO-12

IRQ-1

N, AT~

Once it’s a Thread

#Now that your ISR is in the context of
a thread:

» You can change the priority using
sys_sched_setscheduler()

» Allows you to create an interrupt priority
scheme
#You can also set CPU affinity masks
to limit thread migration and
optimize the use of processor caches

» taskset() command from command line
or via sys_sched_setaffinity() calls

IntThreads-ELC-SF-27 Copyright (c) 2009, The PTRGroup, Inc. \
A

N

Writing ISRs for Interrupt Threads

#Use the CONFIG_PREEMPT_RT #define to
determine if you’re compiling for a kernel
with the RT patch

+#Do bottom halves still work?

» Yes, but you don’t need to use them in this
case

#You can use the in_irg() call to determine
if you’re running in a normal IRQ

» It returns false if you're in an interrupt thread

#Use this to know if you need to schedule a
tasklet or not

IntThreads-ELC-SF-28 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

Threading isn’t Always Best

#Just because you can thread your ISRs doesn’t
mean that you should

#The overhead of scheduling a thread doesn’t
make sense for simple devices

» Timers, serial ports, etc.
e Their behavior was already deterministic

#The request_irq() call has a solution to this
» IRQF_NODELAY or IRQF_TIMER flags

» If either of these flags are present, the ISR runs the
old-fashioned way

IntThreads-ELC-SF-29 Copyright (c) 2009, The PTRGroup, Inc.
pyright () p \K — v af —4

Quantifying Performance

#Along with the R-T patch set are a number of
nerformance measurement tools

#Instrumentation for interrupt latency, wakeup
atency and histograms for worst offenders

» Some latency measurements use the same entries in
/proc
e Only one of these measurements can be active at a time

» Read the kernel configurator help to learn how to
control them
#Beware: collecting data will change your timing

» Don’t leave these measurements enabled in a
shipping product!

IntThreads-ELC-SF-30 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

Enabling Data Collection

= |

| Option

Option

IntThreads-ELC-SF-31

X

= F HID Devices
USE HID Boot Protocol drivers
= [\ USE support
USE Serial Converter support
USB DSL modem support
USE Gadget Support
I MMC/SD card support
CLED Support
(1 Real Time Clock
CBUS support
= File systems
CO-ROM/DVD Filesystems
DOS/FAT/NT Filesystems

O Enable unused/obsolete exported symbols

Debug Filesystem

ORun 'make headers check' when building vmlinux
O kernel debugging

O Kernel event tracing

OWakeup latency timing

Latency tracing

O Mon-preemptible critical section latency timing
Interrupts-off critical section latency timing

(=l interrupts-off critical section latency histogram
O KGDB: Wait for debugger to attach on an unknown exception
= Verbose user fault messages
O Kernel Function Trace

Pseudo filesystems
Layered filesystems
Miscellaneous filesystems
Metwork File Systems
Partition Types
Mative language support
O Distributed Lock Manager (DLM)
o
OSample kernel code
Security options
= Cryptographic API
Hardware crypto devices
Library routines

Copyright (c) 2009, The PTRGroup, Inc.

interrupts-off critical section latency histogram (INTERRUPT _OFF_HIST)

This opticn legs all the interrupts-off critical section latency
timing to a big histogram bucket, in the meanwhile, it also
dummies up printk produced by interrupts-off critical section
latency timing.

The interrupts-off critical section latency timing histogram can
be viewed via:

cat /proc/latency_histfinterrupt_off latency/CPU*

{(Note: * presents CPU I1D.)

N, AT~

Comparative Benchmarks #1

% RH did some | .
benchmarking R e
for their
collateral |
material :
¥ Focused on
message
passing on x86
¥ Shows relative ”M Ml ‘}
stability of R-T R l U
kernel compared ol - - -

to stock kernel

Source: redhat.com

IntThreads-ELC-SF-32 Copyright (c) 2009, The PTRGroup, Inc. \ l P T?

Comparative Benchmarks #2

Lmbench shows RHEL5 vs RHEL5-RT Lmbench Results

better context switch o5

times, smaller 5 oss
average network ; oos B
latency and an . ozs | ¥ reemcana
increase in local ; ors
bandwidth with the ; oes

R_T patc h e n ab I e d Context Switch ~ Network Latency Local Band-

(e mser) (ave msec) widths (GB/sec)
% Some ap pl |Cat| On S Smaller=better ~ Smaller=better Bigger=better
may see ah increase
in throughput due to
preemption

» Instead of waiting on
hardware to respond

Source: redhat.com

IntThreads-ELC-SF-33 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

Interesting Links

+# Real-time patches
» http://www.kernel.org/pub/linux/kernel/projects/rt/

R-T kernel How-To on the R-T Wiki
» http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

Thomas Gleixner’s R-T tests
» http://www.kernel.org/pub/linux/kernel/people/tglx/rt-tests/

¥ linux-rt-users mailing list
» http://vger.kernel.org/vger-lists.html#linux-rt-users

+# Tibco messaging benchmark
» http://www.tibco.com/software/messaging/enterprise_messaging_service

+# Red Hat R-T Performance Whitepaper
» http://www.redhat.com/f/pdf/mrg/mrg_realtime whitepaper.pdf

IntThreads-ELC-SF-34 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

Summary

+# Real-time means being fast enough
» Determinism is nice to have when you can get it

e Some applications, like audio, require it

The R-T patch set includes many key enhancements including
interrupt threads that make the kernel more responsive

» However, some throughput may be sacrificed

The use of interrupt threads enables developers to prioritize
interrupts and make interrupt servicing more deterministic

» Jitter goes way down
» May require some system redesign to take full advantage of threading

The R-T patch set is making its way into enterprise and desktop
applications via SUSE, RH and Ubuntu

» Hopefully, it will be mainstreamed soon

IntThreads-ELC-SF-35 Copyright (c) 2009, The PTRGroup, Inc.
pyright (c) p \K — ' —4

