The bugs are too fast

and why we can't catch them.

Kevin Hilman, BayLibre

Introductions

BayLibre

- embedded Linux consultancy, engineering services
- based in Nice, France
- ~40 engineers
- open-source focus
 - top 20 Linux kernel contributor
 - o top 5 AGL contributor
 - o u-boot, Zephyr, ATF, OP-TEE, Yocto

Kevin

- co-founder, Sr. Engineer
- Linux kernel developer and maintainer
- based in Seattle
- co-founder KernelCl project

Agenda

- Kernel testing landscape
- Bugs
- Fragmentation
- KernelCI & Consolidation

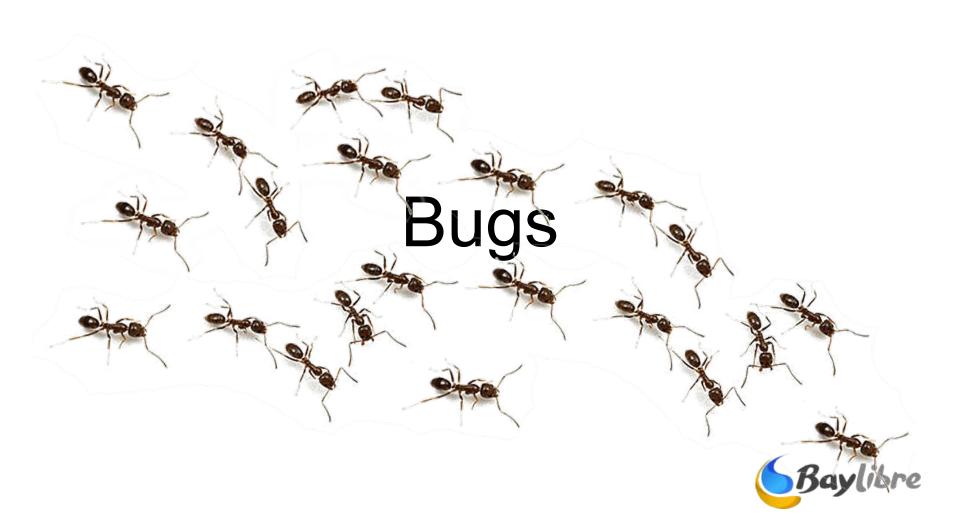
Kernel testing landscape

- LTP, kselftest, syzbot, ...
- KUnit: unit testing and mocking [1]
 - → arch agnostic, can use UML: fast!
 - → just merged
- KTF: Kernel Test Framework^[2]
 - → RFC Aug 12, 2019

https://google.github.io/kunit-docs/third_party/kernel/docs/

^[2] https://lore.kernel.org/linux-kselftest/CAFd5g44-RMaH0kwb+=mW41HO_CgBZ3wK0vnr=Yvb_rE68JazWg@mail.gmail.com/

Kernel testing landscape


- Intel 0-Day and Linux Kernel Performance (LKP)^[1]
 - → Builds and static analysis for many arches, testing only on x86
- LKFT: Linaro Kernel Functional Tests^[2]
 - → In-depth testing; Only run tests on Linaro member platforms
- CKI: Continuous Kernel Integration^[3]
 - → Stable kernel focus: x86_64, arm64, ppc64le
- KernelCI
 - → Broad hardware support; very basic test suites

Kernel testing landscape

- Developers, contributors to upstream, maintainers
 - → Only run tests on their workstations / dev boards

- Users: distros, OEMs, SoC/CPU vendors
 - → Only run tests on their own hardware
 - → Don't necessarily send fixes upstream

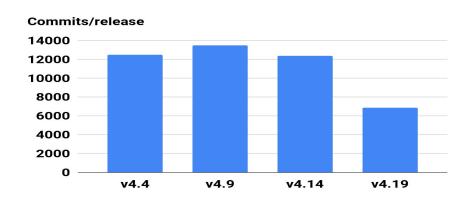
Fixes: tags

- 2017: **7603**/73873 (**10.3%**)
- 2018: **8947**/75768 (**11.8%**)
- 2019: **8259**/59959 (**13.8%**)
- <½ has Fixes tags (40% in linux-4.14.y)

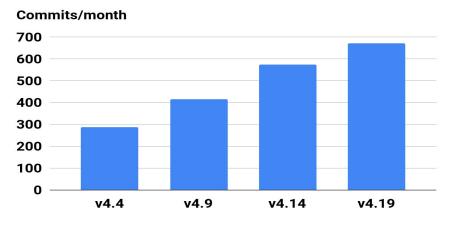
Source: Dmitry Vyukov's LPC2019 talk:

https://linuxplumbersconf.org/event/4/contributions/554/

syzbot bugs


2 years:

- <u>~2300 bugs</u> upstream (3/day)
- ~2500 bugs in Android/ChromeOS/stable/internal
 +1000 reported manually before syzbot (~40 bugs/mo for 2 years)


= **5800** bugs

- fuzzing is not supposed to find that many! (simple bugs, broken subsystems)
- only 7% coverage
- only "crashes" (fine with "does wrong thing", bad EINVAL)
- no KTSAN, no KUBSAN

"Stable" releases

- + not backported fixes (700+)
- + not fixed upstream bugs (500+)
- + not found/detectable bugs (???)

>20'000 bugs/release

Source: Dmitry Vyukov's LPC2019 talk

Fragmentation

- CI / CD pipelines
- test frameworks
- test suites
- results parsing
- pass / fail criteria
- log collection, aggregation
- results reporting, analysis
- results visualization
- bug tracking
- kernel developer processes for fixes

... and this is is just in the open, community projects.

Conclusion

Fragmentation bad

Collaboration good

Work upstream

No upstream? create one!

... also for testing & CI

KernelCI status update

Goal: all CPU architectures

Today:

 \rightarrow x86_64, arm, arm64, mips, arc, riscv

Goal: a wide range of hardware platforms

Today

- → 35+ SoC vendors
- \rightarrow 250+ unique boards

KernelCI: multiple build dimensions

Multiple kernel trees

- → mainline, next, stable, stable-rc
- → subsystems: media, sound, clk, soc
- → maintainers, developers
- → android-common, chrome-platform

Multiple config options

- → all upstream defconfigs (220+)
- → CONFIG CPU BIG ENDIAN=y'
- \rightarrow CONFIG SMP=n
- → CONFIG RANDOMIZE BASE=
- → and more...

Multiple compilers

- → gcc, clang
- → multiple versions

Functional tests

Graphics: IGT (DRM/KMS)

→ Subset run on a handful of devices, gradually expanding

Media: v4l2-compliance

→ Full test suite run on hardware and QEMU (vivid driver)

Power: suspend / resume

→ Run on many boards, finding issues regularly

USB: smoke test

→ Check that the USB subsystem is initialised

Fragmentation

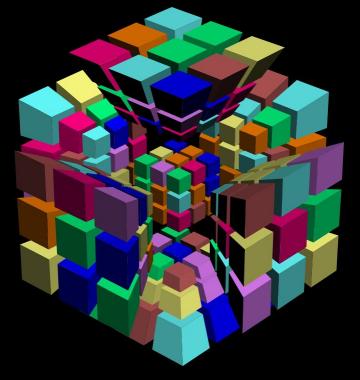
- CI / CD pipelines
- test frameworks
- test suites
- results parsing
- pass / fail criteria
- log collection, aggregation
- results reporting, analysis
- results visualization
- bug tracking
- kernel developer processes for fixes

... and this is is just in the open, community projects.

Consolidation, Collaboration, Community

- Membership based, Sustainable funding
- Open testing philosophy
- KernelCl as open-source software
- KernelCl as a service: kernelci.org
- Founding members:
 - Collabora, BayLibre, Google, Microsoft, RedHat, CIP, Foundries.io

Challenge: data is growing


Matrix is expanding

Collecting lots of data, results, logs, artifacts

Storage, Analytics, Visualization, Reporting

Big Data?

What's next?

Collaboration: LKFT, CKI, Fuego...

Improve reporting, analytics, visualization, reporting, etc.

More hardware, more compute

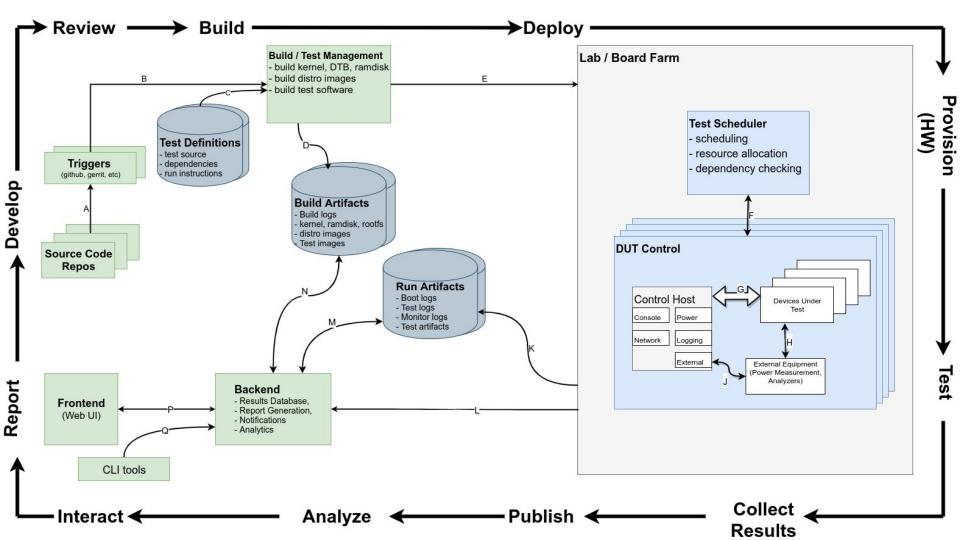
Other CI pipelines (gitlab CI,...)

More tests: fuzzing, KUnit?

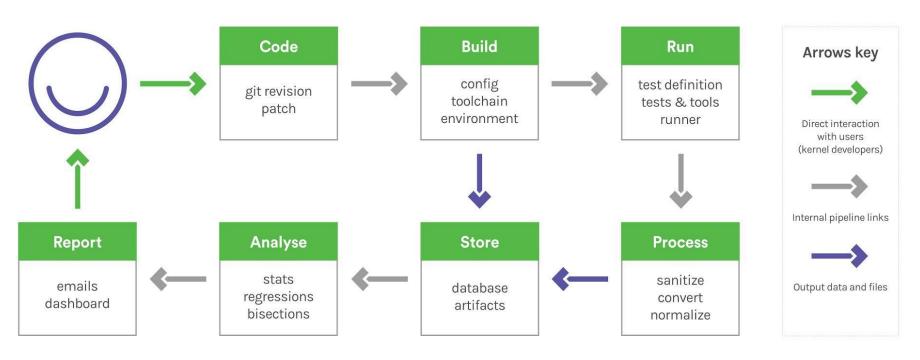
Distro kernels, Yocto?

Join the project and help decide!

Open testing philosophy



We like open-source software



What about open-source testing?

KernelCl Modular Pipeline

github.com/kernelci/kcidb

Photo credits

agenda: https://pixabay.com/photos/agenda-appointment-calendar-coffee-2296195/

landscape: https://www.flickr.com/photos/hemlit/8212362709/

sand: https://www.flickr.com/photos/156754622@N02/23962149187/

thank you: https://flic.kr/p/bGhz

big data: https://flic.kr/p/deKzer

future: https://pxhere.com/en/photo/1449979

obvious: https://www.flickr.com/photos/emmajane/2580835224

ants: http://pngimg.com/download/19357

snow: https://www.flickr.com/photos/waynethume/4335043665

big data: https://flic.kr/p/deKzer

future: https://pxhere.com/en/photo/1449979

