
softprise
CONSULTING OÜ

www.softprise.net

Doing big.LITTLE right:
little and big obstacles

Uladizislau Rezki, Vitaly Wool
 Softprise Consulting OÜ 2015

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

What is big.LITTLE?
• Complex multicore CPU architecture combining...

– Several high performance “big” cores
– Several lower power “small” cores

• Cores should be architecturally compatible
• Cores may be...

– Of 2 different architectures
– Of the same architecture but with different...

• Highest frequency
• Cache size

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Why big.LITTLE?
• Targeting optimal power saving/performance

balance
– Real life CPU load is bursty

• big.LITTLE allows for running power hungry cores only when
bursts are coming

– Peak performance only when it's needed
– Power optimized cores run most of the time

• More options for fine tuning compared to standard
SMP

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Big / LITTLE cores: how to combine
• Clustered switching

– A cluster of big cores and a cluster of little ones
– The OS can only use one cluster at a time
– Standard SMP scheduling within the cluster

• In-kernel switching (CPU migration)
– Little and big cores are split into pairs

• Only one core in a pair can be active
– Standard SMP scheduling within the set of pairs

• Heterogeneous switching (HMP)
– All cores can be used simultaneously

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Mainline Linux scheduler (“fair”)
• Goals of the fair (CFS) scheduler

– Even distribution of task load across cores
– The task ready to run should quickly find core to run on

• Implementation
– Sorting tasks in ascending order by CPU bandwidth

received
• Red-black trees are used to streamline the process
• The leftmost task off the tree is picked up next

– It has the least spent execution time

• Limitations
– Implies that the cores are the same (e. g. SMP)

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

“fair” scheduler and big.LITTLE
• Symmetry principle doesn't work well

– Treating big and little cores as symmetrical is very
inefficient

– Treating tasks as symmetrical doesn't work well too
• Running big cores is a stress for the system
• Only really important tasks should run on big cores

• Big cores should be utilized for short time periods
– And only for “big” tasks

• Scheduler changes required for HMP
– No consensus in mainline
– Two competing implementations

• Qualcomm/Codeaurora vs Linaro/ARM

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Performance/power graphs

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Big (and LITTLE) obstacles
• Mainline CFS is not really applicable to b.L

– Global symmetry principle doesn't work in asymmetrical
system

• Big cores require careful treatment
– Should only be run when it's really needed

• Power consumption and heating issues
– Detection of such situation is the problem to solve

• Task packing problem
• Load balancing problem

– Covered later in the slides, too

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

HMP scheduler principles
• Need to account for b.L core differences
• Tasks should be differentiated

– big/little
– important/unimportant

• Task scheduling should depend on its properties
– Task “size” (load-based)

• Should be calculated somehow
– Task importance

• Based on nice Linux priorities
– Not so fine-grained in Android case

•

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Task load calculation
• History window-based load tracking

– History update events
• Task starts up/begins execution
• Task stops execution

– Demand calculation
• <delta>: measure of task's CPU occupancy
• <freq

cur
>: current frequency of the core

• <freq
max

>: maximum possible frequency across all cores

– We should account for core performance
• Task demand is scaled according to its core's performance

task−demand :=
delta⋅ freqcur
freqmax

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

 Figuring runnable average (Linaro)
• Runnable history is divided into ~1ms periods
• Weighted load calculation

– Where y32 = 0.5
• Advantages of the approach

– More samples should give better precision
• Some inefficiency detected

– Computationally heavy
– Denominator y is not easily configurable

• Load decay is too slow

load :=u0$u1⋅y$u2⋅y
2$...

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Window-based load tracking (QC)
• Keeps track of N windows of execution per task

– N=5 and sched_ravg_window=10 (ms)
• demand is calculated as max/average of samples
• Both are extremely power inefficient

– High spikes when using “max” strategy
– Slow ramp down when using “average”
– “hybrid” strategy combines the drawbacks of both

• Our suggestion: weighted load
– Sample value exponentially decreased over time
– Bigger N gives better precision

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Load tracking: max/avg

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Load tracking: exponential WA

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

“Small” and “big” tasks
• Small task

– A periodic task with short execution time
– Can be easily identified using task average demand

• a task is small if its load is below specified threshold
• Requires load tracking on scheduler level

• Big task
– Task producing high CPU load (normally 90%+)
– Some heavy tasks we don't want to count as big

• e. g. background threads in Android case

• Not all tasks are either big or small
• Tasks can change their “size” over time

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Packing small tasks
• Why pack?

– Small tasks disturb cores with frequent wake-ups
– “packing” tasks minimizes wake-ups of different cores,

should thus minimize power consumption
• OTOH, packing may result in overloading a CPU
• Packing should be parametrized to allow for fine

tuning
– Depending on the type of application
– Depending on the architecture of cores

• Implementations differ a lot

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Packing: Qualcomm/Codeaurora
• /sys/devices/system/cpu/cpuX/sched_mostly_idle_freq
• /sys/devices/system/cpu/cpuX/sched_mostly_idle_nr_run

– A core is considered mostly idle if its frequency and number of
running tasks are below respective thresholds

• /sys/devices/system/cpu/cpuX/sched_mostly_idle_load
– Scheduler will not try to pack tasks from this core if the load is above

this threshold

• Seems to give a lot of granularity
– These parameters are per-core

• Ends up packing all tasks on CPU#0
– Higher interrupt thread latencies
– CPU#0 “starvation” possible

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Packing: Linaro/ARM
• /sys/kernel/hmp/packing_limit

– Do not pack tasks on a core if its load will be above this
limit after packing

• /sys/kernel/hmp/packing_enable
– Toggle packing process

• Less granular than Qualcomm's implementation
– No per-core parametrization

• Better behavior in real life scenarios
– Will not pack everything to a single core for a bursty

load

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

QoS and packing: comparison

Chrome scrolloing Home screen scrolling Video playback Camera
0

2

4

6

8

10

12

Frame drops, Q, %
Frame drops, L, %

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Load balancing
• Runs both per-cluster and per-core

– Per-cluster balancing pulls tasks between clusters
– Per-core balancing spreads tasks within cluster

• Algorithm
– Find the busiest group
– In this group, find the busiest run queue (CPU)
– Move tasks from that CPU to another if appropriate

• May conflict with small tasks packing

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Load balancing

Global load balancer

Small cluster Big cluster

small task big task normal task

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Refining big tasks selection
• Heavy background tasks are not desired to run

on big cluster
– Compromise the power consumption benefit
– Or limit the performance gain

• 'Nice' priority based selection is the first step
– Discount big tasks which have bigger nice value

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Android big tasks selection specifics
• Android API defines few nice values for

userspace applications
– Most Android tasks have nice priority 0
– Discounting these will hurt user experience

• Refine big tasks selection for Android
– Cgroup-based selection

• Refuse upmigation for background cgroup tasks

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

HMP scheduler and CPUfreq
• Objectives

– HMP scheduler calculates loads anyway
• It's more efficient to drive/hint CPUFreq from scheduler
• CPUFreq governor may query scheduler for load

– CPUFreq can only run within a cluster
– Scheduler should notify CPUFreq if task is migrated

across clusters
• Consequences

– CPUFreq governors should have HMP support to be
used in big.LITTLE systems

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Conclusions
• big.LITTLE is a complex architecture that allows

for optimizing both power and performance
• Mainline Linux kernel can not leverage well the

advantages of big.LITTLE yet
• big.LITTLE kernel support impacts many

subsystems
• Leveraging big.LITTLE architecture in Android

requires a lot of fine tuning
• big.LITTLE best practices are to be identified yet

http://www.softprise.net/

softprise
CONSULTING OÜ

www.softprise.net

Thanks for your attention!

Questions?
mailto:vlad.rezki@softprise.net

mailto: vitaly.wool@softprise.net

http://www.softprise.net/
mailto:vlad.rezki@softprise.net

	Presentation TITLE
	Example Bullet Point slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

