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What is big.LITTLE?
• Complex multicore CPU architecture combining...

– Several high performance “big” cores
– Several lower power “small” cores

• Cores should be architecturally compatible
• Cores may be...

– Of 2 different architectures
– Of the same architecture but with different...

• Highest frequency
• Cache size
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Why big.LITTLE?
• Targeting optimal power saving/performance 

balance
– Real life CPU load is bursty

• big.LITTLE allows for running power hungry cores only when 
bursts are coming

– Peak performance only when it's needed
– Power optimized cores run most of the time

• More options for fine tuning compared to standard 
SMP

http://www.softprise.net/


softprise
CONSULTING OÜ

www.softprise.net

Big / LITTLE cores: how to combine
• Clustered switching

– A cluster of big cores and a cluster of little ones
– The OS can only use one cluster at a time
– Standard SMP scheduling within the cluster

• In-kernel switching (CPU migration)
– Little and big cores are split into pairs

• Only one core in a pair can be active
– Standard SMP scheduling within the set of pairs

• Heterogeneous switching (HMP)
– All cores can be used simultaneously

http://www.softprise.net/
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Mainline Linux scheduler (“fair”)
• Goals of the fair (CFS) scheduler

– Even distribution of task load across cores
– The task ready to run should quickly find core to run on

• Implementation
– Sorting tasks in ascending order by CPU bandwidth 

received
• Red-black trees are used to streamline the process
• The leftmost task off the tree is picked up next

– It has the least spent execution time

• Limitations
– Implies that the cores are the same (e. g. SMP)

http://www.softprise.net/
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“fair” scheduler and big.LITTLE
• Symmetry principle doesn't work well

– Treating big and little cores as symmetrical is very 
inefficient

– Treating tasks as symmetrical doesn't work well too
• Running big cores is a stress for the system
• Only really important tasks should run on big cores

• Big cores should be utilized for short time periods
– And only for “big” tasks

• Scheduler changes required for HMP
– No consensus in mainline
– Two competing implementations

• Qualcomm/Codeaurora vs Linaro/ARM

http://www.softprise.net/
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Performance/power graphs
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Big (and LITTLE) obstacles
• Mainline CFS is not really applicable to b.L

– Global symmetry principle doesn't work in asymmetrical 
system

• Big cores require careful treatment
– Should only be run when it's really needed

• Power consumption and heating issues
– Detection of such situation is the problem to solve

• Task packing problem
• Load balancing problem

– Covered later in the slides, too

http://www.softprise.net/
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HMP scheduler principles
• Need to account for b.L core differences
• Tasks should be differentiated

– big/little
– important/unimportant

• Task scheduling should depend on its properties
– Task “size” (load-based)

• Should be calculated somehow
– Task importance

• Based on nice Linux priorities
– Not so fine-grained in Android case

•

http://www.softprise.net/
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Task load calculation
• History window-based load tracking

– History update events
• Task starts up/begins execution
• Task stops execution

– Demand calculation
• <delta>: measure of task's CPU occupancy
• <freq

cur
>: current frequency of the core

• <freq
max

>: maximum possible frequency across all cores 

– We should account for core performance
• Task demand is scaled according to its core's performance

task−demand :=
delta⋅ freqcur
freqmax

http://www.softprise.net/
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 Figuring runnable average (Linaro)
• Runnable history is divided into ~1ms periods
• Weighted load calculation

– Where y32 = 0.5
• Advantages of the approach

– More samples should give better precision
• Some inefficiency detected

– Computationally heavy
– Denominator y is not easily configurable

• Load decay is too slow

load :=u0$u1⋅y$u2⋅y
2$...

http://www.softprise.net/
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Window-based load tracking (QC)
• Keeps track of N windows of execution per task 

– N=5 and sched_ravg_window=10 (ms)
• demand is calculated as max/average of samples
• Both are extremely power inefficient

– High spikes when using “max” strategy
– Slow ramp down when using “average”
– “hybrid” strategy combines the drawbacks of both

• Our suggestion: weighted load
– Sample value exponentially decreased over time
– Bigger N gives better precision

http://www.softprise.net/
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Load tracking: max/avg
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Load tracking: exponential WA

http://www.softprise.net/


softprise
CONSULTING OÜ

www.softprise.net

“Small” and “big” tasks
• Small task

– A periodic task with short execution time
– Can be easily identified using task average demand

• a task is small if its load is below specified threshold
• Requires load tracking on scheduler level

• Big task
– Task producing high CPU load (normally 90%+)
– Some heavy tasks we don't want to count as big

• e. g. background threads in Android case

• Not all tasks are either big or small
• Tasks can change their “size” over time

http://www.softprise.net/
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Packing small tasks
• Why pack?

– Small tasks disturb cores with frequent wake-ups
– “packing” tasks minimizes wake-ups of different cores, 

should thus minimize power consumption
• OTOH, packing may result in overloading a CPU
• Packing should be parametrized to allow for fine 

tuning
– Depending on the type of application
– Depending on the architecture of cores

• Implementations differ a lot

http://www.softprise.net/
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Packing: Qualcomm/Codeaurora
• /sys/devices/system/cpu/cpuX/sched_mostly_idle_freq
• /sys/devices/system/cpu/cpuX/sched_mostly_idle_nr_run

– A core is considered mostly idle if its frequency and number of 
running tasks are below respective thresholds

• /sys/devices/system/cpu/cpuX/sched_mostly_idle_load
– Scheduler will not try to pack tasks from this core if the load is above 

this threshold

• Seems to give a lot of granularity
– These parameters are per-core

• Ends up packing all tasks on CPU#0
– Higher interrupt thread latencies
– CPU#0 “starvation” possible

http://www.softprise.net/
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Packing: Linaro/ARM
• /sys/kernel/hmp/packing_limit

– Do not pack tasks on a core if its load will be above this 
limit after packing

• /sys/kernel/hmp/packing_enable
– Toggle packing process

• Less granular than Qualcomm's implementation
– No per-core parametrization

• Better behavior in real life scenarios
– Will not pack everything to a single core for a bursty 

load

http://www.softprise.net/
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QoS and packing: comparison 
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Load balancing
• Runs both per-cluster and per-core

– Per-cluster balancing pulls tasks between clusters
– Per-core balancing spreads tasks within cluster

• Algorithm
– Find the busiest group
– In this group, find the busiest run queue (CPU)
– Move tasks from that CPU to another if appropriate

• May conflict with small tasks packing 

http://www.softprise.net/
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Load balancing

Global load balancer

 
Small cluster Big cluster

small task big task normal task
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Refining big tasks selection
• Heavy background tasks are not desired to run 

on big cluster
– Compromise the power consumption benefit
– Or limit the performance gain

• 'Nice' priority based selection is the first step
– Discount big tasks which have bigger nice value

http://www.softprise.net/
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Android big tasks selection specifics 
• Android API defines few nice values for 

userspace applications
– Most Android tasks have nice priority 0
– Discounting these will hurt user experience

• Refine big tasks selection for Android
– Cgroup-based selection

• Refuse upmigation for background cgroup tasks 

http://www.softprise.net/
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HMP scheduler and CPUfreq
• Objectives

– HMP scheduler calculates loads anyway
• It's more efficient to drive/hint CPUFreq from scheduler
• CPUFreq governor may query scheduler for load

– CPUFreq can only run within a cluster
– Scheduler should notify CPUFreq if task is migrated 

across clusters
• Consequences

– CPUFreq governors should have HMP support to be 
used in big.LITTLE systems

http://www.softprise.net/
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Conclusions
• big.LITTLE is a complex architecture that allows 

for optimizing both power and performance
• Mainline Linux kernel can not leverage well the 

advantages of big.LITTLE yet
• big.LITTLE kernel support impacts many 

subsystems
• Leveraging big.LITTLE architecture in Android 

requires a lot of fine tuning
• big.LITTLE best practices are to be identified yet

http://www.softprise.net/
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Thanks for your attention!

Questions?
mailto:vlad.rezki@softprise.net

mailto: vitaly.wool@softprise.net
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