OSS Activities through EMLinux Development

Hiraku Toyooka
Cybertrust Japan Co., Ltd.

2021.05.27
Outline

■ Security updates for embedded Linux
■ What is EMLinux?
■ OSS contributions from Cybertrust
■ Future work
Hiraku Toyooka <hiraku.toyooka@miraclelinux.com>

- Engineering Management for EMLinux @ Cybertrust Japan
- Contributing to CIP Testing WG, meta-debian, etc.
- Maintainer of meta-emlinux, meta-debian-extended
Security updates for embedded Linux

■ Security updates are becoming recognized as essential, but...

■ Some difficulties to deliver the update for final products
 ● There are massive out-of-tree patches, which make it difficult to backport community’s fixes
 ■ Most of these typically come from SoC vendor’s BSP
 ■ + your own code for a custom board
 ● QA process with every update is costly

• LTSを使ってます！ ではダメで、4.19.x の x (リビジョン) を上げ続けないと意味がない

“There are massive out-of-tree patches”

No perfect solution, but we might be able to …

■ minimize out-of-tree code
 ● select SoC/device which its support code is merged into upstream enough
 ● use upstream code (or do upstreaming the code), if possible

■ rebase out-of-tree code onto community’s latest release
 ● Option 1: rebase onto latest version/revision (rolling update)
 ■ Fixes will be available earliest
 ■ Latest version includes feature changes, which may require changes to the product code
 ■ Some SoC vendors provide BSP upgrades every 1~ year
 ● Option 2: rebase onto latest LTS branch, if available
 ■ LTS branch only accepts bug fixes, little impact on product code
 ■ You need to upgrade to latest version after the LTS period is over
“QA process with every update is costly”

We should start automating some part of the QA process

- Test automation would be the first candidate
What is EMLinux?

- Embedded Linux environment using Yocto build system
 - (There are Community Edition and Product Edition)

- Purpose
 - continuously deliver security-fixes and bug-fixes

- How?
 - based on LTS model
 - leverage CIP SLTS kernel, meta-debian, Debian source pkgs
 - with Test Automation
 - upstreaming bug-fixes
EMLinux: Why we choose LTS model?

- LTS model is easy for most users to start the security update process
 - including test automation
- Less changes in features or interfaces (than rolling update model)
 - Less impacts on product-specific code
 - (Automated) test cases are re-usable for a long time
 - Verification of the changes is easier
Leveraging CIP kernel, meta-debian, Debian source pkgs

- **CIP Super Long-term Stable (SLTS) kernel**
 - maintained by Civil Infrastructure Platform Project for 10+ years
 - Upstream first policy. All LTS commits are merged.
 - Twice a month release for 4.19.y-cip
Leveraging CIP kernel, meta-debian, Debian source pkgs

- **meta-debian**
 - “Yocto Project extension for using Debian source packages”
 - Created by Toshiba people
 - Debian source packages:
 - Stable version typically accepts only bug-fixes
 - 3 + 2(LTS) years maintenance period
 - Packages are updated with each Debian’s point release
 - Some packages will be maintained as CIP Core Packages for 10 years

- **meta-debian-extended**
 - Additional packages for meta-debian (Same recipe format)
 - Created by Cybertrust
Test Automation

- SLTS kernel and meta-debian(deby) are tested in CIP Testing
- EMLinux is tested with in-house EMLinuxCI (+ periodic manual tests)
- Found bugs / issues are fed back to upstream

Upstream
(Various test systems)

- Linux mainline / LTS
- Debian / Yocto / etc.

CIP Testing
(Gitlab CI/CD, LAVA)

- CIP SLTS
- meta-debian (deby)

EMLinuxCI
(Buildbot, LAVA)

- build / boot / smc / ltp / kselftest (30+ devices)
- HW Support
- additional meta layers

feedback
OSS contribution from Cybertrust

Kernel

- Maintenance of CIP SLTS kernel
 - Current Kernel Team Chair is from Cybertrust

- CIP Testing WG
 - Operating LAVA lab (lab-cip-cybertrust) in CIP LAVA
 - also used from KernelCI: contributing upstream work
 - Contributing new features and bug-fixes to some projects
 - CIP Testing: Kselftest integration is in-progress
 - KernelCI: kernelci-core, kernelci-docker, lava-docker, etc.
 - LAVA: xilinx-zcu102 (re-)support
OSS contribution from Cybertrust

meta-debian

- many contributions
 - Cybertrust people made 142 of 525 commits in warrior branch
 - package addition
 - cve-check feature with Debian Security Bug Tracker
 - recipe updates on each Debian point release
 - bug-fixes
OSS contribution from Cybertrust

meta-debian

- cve-check feature with Debian Security Bug Tracker
 - Yocto cve-check refers NVD DB, which uses version numbers to determine whether the vulnerability is included or not

<table>
<thead>
<tr>
<th>PACKAGE NAME: openssl-native</th>
<th>PACKAGE VERSION: 1.1.1d</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE: CVE-2021-23841</td>
<td></td>
</tr>
<tr>
<td>CVE STATUS: Patched</td>
<td></td>
</tr>
<tr>
<td>CVE SUMMARY: The OpenSSL public API function X509_issuer_and_serial_hash() attempts to ...</td>
<td></td>
</tr>
</tbody>
</table>

- For Debian source packages, we need additional considerations
 - Security bugs are fixed (backported) in the same version like:
 - 1.1.1d-0+deb10u1 + (fix in 1.1.1e+) -> 1.1.1d-0+deb10u2
 - False positives happen only with NVD DB
 - We complement that information by using Debian Security Bug Tracker -> merged.
OSS contribution from Cybertrust

Others

■ Yocto (poky)
 ● Some features and bug-fixes

■ OpenEmbedded
 ● License corrections

■ util-linux
 ● bug-fixes in a test case

■ Buildbot
 ● support git-repo '--submodules' option
Future Work

- Expansion of test cases
 - continue to integrate kselftests into CIP Testing
 - ptest enablement in meta-debian{-extended}

- Expansion of KernelCI collaboration
 - support xilinx-zcu102

- Direct contributions to Linux Kernel (mainline, LTS), Debian