Cell broadband engine, SPE
assisted user space device driver

2007.02.22

Hiroyuki Machida

Abstract

* Cell broadband engine is a heterogeneous multi-core
processor which consists of a Power PC element, (PPE)
and Synergistic Processor Elements (SPEs). SPEs can
be used to achieve better performance. This paper
proposes tilizing SPEs from user space to accelerate
kernel services. Our solution allows kernel services to
access to SPEs easily. We'll show evaluation of the
concept, using modified compressed loop device driver,
CLOOP, to utilize SPE. We'll also discuss possible other
kernel services to be accelerated by SPEs.

* Shinohara, Machida
* Tsukamoto,
* Suzaki

Motivation

* Accelerate kernel services including
device drivers utilizing Cell features like
SPEs.

| PPU Logic |

Cell employs following strategies
- “simpler structure and higher clock”
-“more room for SPEs on silicon”

PPU could not achieve same
performance with same clock
G5(PPC970) due to lack of logics..

Most conventional codes are running on PPU.
It would be very nice to accelerate those conventional
code without modification.

What Is Cell ?

* 1 PPE + 8 SPE connected with EIB

- PPE - Power Processor Element
* PPC64+VMX insns/SMT/in-order/deep pipeline
- SPE - Synergetic Processor Element
* general purpose SIMD with Local Storage (LS), not cache

- EIB - Element Interconnect Bus
* Hi-speed coherent SMP Bus

Cell
SPE SPE SPE SPE

PPE Graphics
— -4——p| Device
EIB

1
v

IO
Main ‘ﬁ’ i ¢ i i Devices
Memory

SPE SPE SPE SPE

Requirements

Preserve existing Kernel-User APIs
Changes should be minimized

Utilize existing functions as much as
nossible

mprove performance
- Less CPU(PPU) usage
- Faster in execution

Constraints

* SPE Itself doesn’t have privilege mode on
execution.

- CPU core of SPE doesn’t have “privilege”
concept.

- However, MFC has capabillity to switch kernel
mode and user mode address space of PPU
side main memory,

* Current Kernel doesn’t support executing
heterogeneous CPU core Instructions.

Possible solutions

* Kernel Mode

- Adding new Infrastructures in kernel to
support SPE acceleration in kernel mode.

* User Mode

- Adding helper feature inside kernel to allow
off loading function for user space for SPE.

Pros v.s. Cons

* Kernel Mode

- Pros
* Less overhead

- Cons

* It's difficult to debug with this model
- kgdb do not speak SPEs

* New code required for spe control in kernel

* User Mode

- Pros
* No new code required for spe control in kernel
* This allows programmers to use existing tools for debug

- Cons
* Overhead switching between kernel and user space

* Require protecting user space SPE data/prog from other
regular user space application

It won't be security hole

* MFC access to the main memory (XDR) is bound inside
corresponding user process, due to MFC talking with
MMU on PPU.

- SPU can’t reach XDR directly, just to Local Storage (LS) .
- Data transfer between LS and XDR is taken place by MFC.

* PPU access to SPU registers and LS are virtualized in
each user process unit.

- PPU can map LS and SPU registers, however SPU registers
have privillage and those mappings are under controlled by
kernel.

- Kernel prevents to map LS and SPU registers from other user
process.

- If it could, it’s a bug of kernel.

* As a conclusion, SPU on running is well isolated from
the other user processes.

Feasibility Study on User mode

* Try out a simple example using cloop,
software device driver.

* Why cloop ?
- It's small

- It has locality on memory reference (block
decompression)

*C
*C
~ U

Terminologies

_OOP Compressed Loop block device
D CLOOP Driver

D User Level Device Driver

Typical SPE program flow

* PPE Program side
- sSpe_create_context()

PPE SPE * Create SPE context

@ s - spe_image_open()

' * Open elf file of SPE program
) - spe_program_load()

* [1] Load SPE program to LS

- spe_context_run()

* [2] Let SPE start the program

* SEP Program side.

- [3] Transfer data to be process into LS from
PPE side main memory, though by MFC.

- Data Flow

- econ - [4] Processi data in LS
- [5] Transfer processed data from LS to PPE
Data | side main memory though MFC.

- [6] Signal PPE program that SPE program has
sopped.

Basic Design

User space SPU offloading daemon waits the request
from kernel.

Driver locks pages, wake up the daemon and pass the
pages to the daemon.

The passed page includes file name of SPE codes,
parameters and input data/out put data.

The daemon start SPE and has been blocked until SPE
execution, according the parameters passed from kernel.

- SPE would transfer data to/from the locked pages.

After SPE execution finished, daemon will inform it to
kernel.

How to pass data from/to kernel

*** Parameter Area ***

of RO Pages

of WR Pages

of WO Pages

SPE program file name
- System params

* # of SPU

* PG Sz

*

- sched params
- Params to be passed SP

Daemon
Program
(PPE side)

Param. Area

\0ad

-¥

SPU
Program

Local Storage

RO RW WO

User Space (daemon)

Buffer in

Kernel

Buffer in Other
User Space

Kernel Space

Sequence Diagram

User
Prg.

I ULD Daem
remap_file _pages()
return

loctl() to inform termination

v

Pass Parameters

Retrun-value

A

N

User Space User Space

* % kX

ULD Daemon

spe_create context()
// /dev/uldN ... stands for ULD helper device file
uldfd = open (“/dev/uldN”,O_RDWR)

addr = mmap(udlfd) // this area are used to pass data between SPE
and Kernel.

repeat:
- /[wait request in remap_file_pages() of ULD helper device.

- I/ page map of mapped “/dev/uldN” would be change by ULD helper
device, on return.

- remap_file_pages()
- Parse parameters on mapped area.
* |If SPE program changed,
- Close previous SPE program image by spe_image_close()
- Then, setup new SPE program with spe_image_open & spe_program_load
- spe_context_run() // run SPE and wait until stop
-/l notify termination of SPE program to ULD helper device

- Goto repeat;

CLDEIM RI=>F1) 7

* CloopZtii& — decompress() & ULD I~
- ULDEINAELI=/NTGA—=2ITYTDT—ILH 5
N1 7 £%
- INTDA—R3ZEHSH x N
* B DFELV=0\SPU program £ il
* T—RIR—T M) AMRO,RW,WO)
* HE
NE/NTA—=2tyrZULDIZIRIT, EREFED
- INGA=Z T TN

Performance estimations

* Purpose

- Does it have worth to develop ?

* PPU execution time >> SPU execution time +
Overhead

* Estimations on executions speed

* Estimations on over head

Execution speed

* Evaluation with miniLZO
- Candidate of alternative Decompress() in CLOOP
- http://www.oberhumer.com/opensource/lzo/
* Why?
- Samll foot print
- Simple algorithm
* Changes on miniLZ0O.202

- Make buffer size to 64KB, so that LS can hold entirely.

Suzaki-san’s comments:
* 64KB block looks too small, how about 128KB block
* gz looks better than LZO, in compression rate

T—ADN0ODH — 0-255MRFE-T=/ 3>
2000[8] compression/decompression Z#gl)iR9
1Bz & ZHHE

http://www.oberhumer.com/opensource/lzo/

Al TE

* &
- normal GCC, SPU GCC, (3% :SPU XLC)TTIE
- SPUD /N1 FdelfspuTEIZETT
- Time aO<>K T real time ZLb#s

* IR
- PPC64 FC5
* gce-4.1.1-1.fc5

- PS3 Linux Distributor Starter’'s Kit v1.1
* |libspe2-2.0.1-be0647.3.20061130.1.ps3pf
* spu-newlib-1.14.0.200612070000-1.ps3pf

- gcc/binutils from IBM Cell SDK 2.0
* spu-gcc-3.3-72
* spu-binutils-3.3-72

ARG SR

SPU-
PPU SPU
XLC
1.015 0.996 1.603 | sec: 2000[A]
| IIBefcl)re 5075 498 8015 usec(compress/decom
Optimization press)
253.75 249 400.75 | usec

% spu-gcc -Wall -03 -mbranch-hints -mdd3.0 -funroll-all-loops ¥
—-fomit-frame-pointer -g -ftree-vectorize —-finline-functions ¥

-ftree-vect-loop-version —ftree-loop-optimize -0 testmini ¥
testmini.c minilzo.c
% time ./testmini

* spuelfin load & run $57 09 SLMNEFRKEFHED T, DFCEK

ERE DR D FEET

* SPU-GCC/SPU-XLCIZ. BEit=EPPUKLYSELY or
REDILN,
- SIMDiEEn TV EEZ NS,
ECrmEilb T nlEkLm?

* gcov TOEIT[BIZZ & A
- PPULETIToT=,
- ETEHNAZLDIE, LT DGR
* Byte copy LTLVSEDAH AR P
* 0 Zbyte searchLTL\5ECAH 1EFT

* BB RELEER
- 32byte LI E%i5 . Byte copy — memcpy

E{ERIGER

SPU-
PPU SPU
XLC
1.015 0.996 1.603 | sec: 2000[H]
| I-Befc-)re 5075 498 8015 usec(compress/decom
Optimization press)
253.75 249 400.75 | usec
0.581 1.156 0.874 | sec: 2000[A]
After (/d
source level 290.5 078 437 usectcompress/decom
L press)
Optimization
145.25 289 218.5 | usec

i B 7 e e 1 B SR AR

* fER
- SPU (GCC)Tlk. B o 1=,
- Memcpy()hVELV?

* Sk

- SIMDIE T MIEAEMNGZY ZHE AL TS
* T0 Zbyte searchLTL\5ECA]
* Investigate into SPE memcpy()

- Enlarge block size
* Keeping whole in LS
- LZO can share in/out buffer 64KB -> 128KB
- Multiple 64KB blocks (4x64K)

* Change program living beyond LS
- Try with various input data

- Consider other de/compression algorithms

Overhead
* j:ib\f&:&n'l_b\b

- 1ElOAVTHFARRAYF Susec
- 2-3EIDYV AT LO—ILAE lusec X 2-3
- Remap 128KB (64Kx2 or 4Kx32) 10usec??

* |Imbench MFEE M SHEA 2
* 20usectEE MDoverhead

Processor, Processes - times iIn microseconds - smaller is better

0S Mhz null null open slct sig sig TfTork exec sh
call 1/0 stat clos TCP inst hndl proc proc proc

localhost Linux 2.6.16 3185 - .35 11.8 4 .58 605. 2333 6804
localhost Linux 2.6.16 3183 .41 11.9 4.59 603. 2340 6824

0S 2p/O0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

localhost Linux 2.6.16 2.9200 13.5 12.1 9.1400
localhost Linux 2.6.16 3.3800 4.5100 13.2 8.3000

Next Steps - 1

* Using UIO ?
- What's UIO (Userspace |10 devices) ?

* Documents/DocBook/kernel-api.tmpl
- drivers/uio/uio.c
- include/linux/uio_driver.h

* Documents/DocBook/uio-howto.tmpl

- Features

* Kernel side helper driver of userspace |0 driver could be
easily implement
- Just few methods and attributes

* Implementation

* Evaluations

Next Steps - 2

Propose Helper functions
- In Kernel space
- In User space

Other Candidate of User Space SPE Device Drivers

Discuss applications on other device drivers and additional
requirements on helper functions.

Crypto API
* -> OCF looks very good candidate ?

- VFB
USB web cam ?? It could be user space driver even now.

* Decompression
* Color space converter

	Cell broadband engine, SPE assisted user space device driver
	Abstract
	Motivation
	What Is Cell ?
	Requirements
	Constraints
	Possible solutions
	Pros v.s. Cons
	It won't be security hole
	Feasibility Study on User mode
	Terminologies
	Typical SPE program flow
	Basic Design
	How to pass data from/to kernel
	Sequence Diagram
	ULD　Daemon
	CLD側から見たシナリオ
	Performance estimations
	Execution speed
	測定
	計測結果
	高速化の余地の検討
	最適化後結果
	簡単な最適化実験
	Overhead
	Next Steps - 1
	Next Steps - 2

