
Embedded Linux Conference Europe 2013

Common clock
framework: how to use it

Gregory CLEMENT
Free Electrons
gregory.clement@free-electrons.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/41

Gregory CLEMENT

I Embedded Linux engineer and trainer at Free Electrons since
2010

I Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://free-electrons.com

I Contributing to kernel support for the Armada 370 and
Armada XP ARM SoCs from Marvell.

I Co-maintainer of mvebu sub-architecture (SoCs from Marvell
Embedded Business Unit)

I Living near Lyon, France

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/41

http://free-electrons.com

Overview

I What the common clock framework is

I Implementation of the common clock framework

I How to add your own clocks

I How to deal with the device tree

I Use of the clocks by device drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/41

Clocks

I Most of the electronic chips are driven by clocks

I The clocks of the peripherals of an SoC (or even a board) are
organized in a tree

I Controlling clocks is useful for:
I power management: clock frequency is a parameter of the

dynamic power consumption
I time reference: to compute a baud-rate or a pixel clock for

example

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/41

The clock framework

I A clock framework has been available for many years (it
comes from the prehistory of git)

I Offers a a simple API: clk_get, clk_enable,
clk_get_rate, clk_set_rate, clk_disable, clk_put,...
that were used by device drivers.

I Nice but had several drawbacks and limitations:
I Each machine class had its own implementation of this API.
I Does not allow code sharing, and common mechanisms
I Does not work for ARM multiplatform kernels.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/41

The common clock framework

I Started by the introduction of a common struct clk in early
2010 by Jeremy Kerr

I Ended by the merge of the common clock framework in
kernel 3.4 in May 2012, submitted by Mike Turquette

I Implements the clock framework API, some basic clock
drivers and makes it possible to implement custom clock
drivers

I Allows to declare the available clocks and their association to
devices in the Device Tree (preferred) or statically in the
source code (old method)

I Provides a debugfs representation of the clock tree

I Is implemented in drivers/clk

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/41

Diagram overview of the common clock framework

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/41

Interface of the CCF

Interface divided into two halves:
I Common Clock Framework core

I Common definition of struct clk
I Common implementation of the clk.h API (defined in

drivers/clk/clk.c)
I struct clk_ops: operations invoked by the clk API

implementation
I Not supposed to be modified when adding a new driver

I Hardware-specific
I Callbacks registered with struct clk_ops and the

corresponding hardware-specific structures (let’s call it
struct clk_foo for this talk)

I Has to be written for each new hardware clock

I The two halves are tied together by struct clk_hw, which is
defined in struct clk_foo and pointed to within
struct clk.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/41

Implementation of the CCF core

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/41

Implementation of the CCF core

Implementation defined in drivers/clk/clk.c. Takes care of:

I Maintaining the clock tree

I Concurrency prevention (using a global spinlock for
clk_enable()/clk_disable() and a global mutex for all
other operations)

I Propagating the operations through the clock tree

I Notification when rate change occurs on a given clock, the
register callback is called.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/41

Implementation of the CCF core

Common struct clk definition located in
include/linux/clk-private.h:

struct clk {

const char *name;

const struct clk_ops *ops;

struct clk_hw *hw;

char **parent_names;

struct clk **parents;

struct clk *parent;

struct hlist_head children;

struct hlist_node child_node;

...

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/41

Implementation of the CCF core

Implementation the API exposed to the drivers in two files:
I drivers/clk/clk.c:

void clk_prepare(struct clk *clk);

void clk_unprepare(struct clk *clk);

int clk_enable(struct clk *clk);

void clk_disable(struct clk *clk);

unsigned long clk_get_rate(struct clk *clk);

long clk_round_rate(struct clk *clk, unsigned long rate);

int clk_set_rate(struct clk *clk, unsigned long rate);

int clk_set_parent(struct clk *clk, struct clk *parent);

struct clk *clk_get_parent(struct clk *clk);

...

I drivers/clk/clkdev.c:
struct clk *clk_get(struct device *dev, const char *id);

void clk_put(struct clk *clk);

...

As well as the the managed interface version (devm_*) and the
device tree related version (of_*).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/41

Implementation of the hardware clock

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/41

Implementation of the hardware clock

I Relies on .ops and .hw pointers

I Abstracts the details of struct clk from the
hardware-specific bits

I No need to implement all the operations, only a few are
mandatory depending on the clock type

I The clock is created once the operation set is registered using
clk_register()

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/41

Implementation of the hardware clock

Hardware operations defined in include/linux/clk-provider.h

struct clk_ops {

int (*prepare)(struct clk_hw *hw);

void (*unprepare)(struct clk_hw *hw);

int (*is_prepared)(struct clk_hw *hw);

void (*unprepare_unused)(struct clk_hw *hw);

int (*enable)(struct clk_hw *hw);

void (*disable)(struct clk_hw *hw);

int (*is_enabled)(struct clk_hw *hw);

void (*disable_unused)(struct clk_hw *hw);

unsigned long (*recalc_rate)(struct clk_hw *hw,

unsigned long parent_rate);

long (*round_rate)(struct clk_hw *hw, unsigned long,

unsigned long *);

long (*determine_rate)(struct clk_hw *hw,unsigned long rate,

unsigned long *best_parent_rate,

struct clk **best_parent_clk);

int (*set_parent)(struct clk_hw *hw, u8 index);

u8 (*get_parent)(struct clk_hw *hw);

int (*set_rate)(struct clk_hw *hw, unsigned long);

void (*init)(struct clk_hw *hw);

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/41

Operations to implement depending on clk capabilities

gate change rate single parent multiplexer root

.prepare

.unprepare

.enable y

.disable y

.is enabled y

.recalc rate y

.round rate y[1]

.determine rate y[1]

.set rate y

.set parent n y n

.get parent n y n

Legend: y = mandatory, n = invalid or otherwise unnecessary, [1]: at
least one of the two operations

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/41

Hardware clock operations: making clocks available

The API is split in two pairs:
I .prepare(/.unprepare):

I Called to prepare the clock before actually ungating it
I Could be called in place of enable in some cases (accessed over

I2C)
I May sleep
I Must not be called in atomic context

I .enable(/.disable):
I Called to ungate the clock once it has been prepared
I Could be called in place of prepare in some case (accessed over

single registers in an SoC)
I Must not sleep
I Can be called in atomic context
I .is_enabled: Instead of checking the enable count, querying

the hardware to determine whether the clock is enabled.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/41

Hardware clock operations: managing the rates

I .round_rate: Returns the closest rate actually supported
by the clock. Called by clk_round_rate() or by
clk_set_rate() during propagation.

I .determine_rate: Same as .round_rate but allow to
select the parent to get the closet requested rate.

I .set_rate: Changes the rate of the clock. Called by
clk_set_rate() or during propagation.

I .recalc_rate: Recalculates the rate of this clock, by
querying hardware supported by the clock. Used internally to
update the clock tree.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/41

Hardware clock operations: managing the parents

As seen on the matrix, only used for multiplexers
I .get_parent:

I Queries the hardware to determine the parent of a clock.
I Currently only used when clocks are statically initialized.
I clk_get_parent() doesn’t use it, simply returns the

clk->parent internal struct

I .set_parent:
I Changes the input source of this clock
I Receives a index on in either the .parent_names or .parents

arrays
I clk_set_parent() translate clk in index

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/41

Hardware clock operations: more callbacks

Callbacks that have been recently added for more specific need:
I .is_prepared:

I Queries the hardware instead of relying on the software
counter to check if a clock was prepared

I Can replace the .is_enable on some place

I .disable_unused:
I Needed when a clock should be disable because it is unused

but can’t use .disable.
I Introduced for OMAP needs

I .unprepared_unused:
I Introduced for the same reason that .disable_unused

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/41

Hardware clock operations: base clocks

I The common clock framework provides 5 base clocks:
I fixed-rate: Is always running and provide always the same rate
I gate: Have the same rate as its parent and can only be gated

or ungated
I mux: Allow to select a parent among several ones, get the rate

from the selected parent, and can’t gate or ungate
I fixed-factor: Divide and multiply the parent rate by

constants, can’t gate or ungate
I divider: Divide the parent rate, the divider can be selected

among an array provided at registration, can’t gate or ungate

I Most of the clocks can be registered using one of these base
clocks.

I Complex hardware clocks have to be split in base clocks
I For example a gate clock with a fixed rate will be composed of

a fixed rate clock as a parent of a gate clock.
I A special clock type clk-composite allows to aggregate the

functionality of the basic clock types into one clock (since
kernel 3.10).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/41

Composite clocks

Composite clock allows to reuse existing base clock and to
aggregate them into a single clock:

I 3 base clocks can be used: mux, rate and gate

I For each base clock aggregated, an handle and the operation
set must be filled

I To register the composite clock, the following function is
used:
struct clk *clk_register_composite(struct device *dev, const char *name,

const char **parent_names, int num_parents,

struct clk_hw *mux_hw, const struct clk_ops *mux_ops,

struct clk_hw *rate_hw, const struct clk_ops *rate_ops,

struct clk_hw *gate_hw, const struct clk_ops *gate_ops,

unsigned long flags);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/41

Composite clocks: example

From drivers/clk/sunxi/clk-sunxi.c (some parts removed)

static void __init sun4i_osc_clk_setup(struct device_node *node)

{

struct clk *clk; struct clk_fixed_rate *fixed;

struct clk_gate *gate; const char *clk_name = node->name;

u32 rate;

/* allocate fixed-rate and gate clock structs */

fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);

[...]

of_property_read_u32(node, "clock-frequency", &rate);

/* set up gate and fixed rate properties */

gate->bit_idx = SUNXI_OSC24M_GATE;

[...]

fixed->fixed_rate = rate;

clk = clk_register_composite(NULL, clk_name, NULL, 0,

NULL, NULL, &fixed->hw, &clk_fixed_rate_ops,

&gate->hw, &clk_gate_ops, CLK_IS_ROOT);

of_clk_add_provider(node, of_clk_src_simple_get, clk);

[...]

}
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/41

Hardware clock operations: device tree

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/41

Hardware clock operations: device tree

I The device tree is the mandatory way to declare a clock
and to get its resources, as for any other driver using DT we
have to:

I Parse the device tree to setup the clock: the resources but
also the properties are retrieved.

I Declare the compatible clocks and associate it with an
initialization function using CLK_OF_DECLARE

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/41

Declaration of clocks in DT: simple example (1)

From arch/arm/boot/dts/armada-370-xp.dtsi

[...]

clocks {

/* 2 GHz fixed main PLL */

mainpll: mainpll {

compatible = "fixed-clock";

#clock-cells = <0>;

clock-frequency = <2000000000>;

};

};

[...]

coredivclk: corediv-clock@18740 {

compatible = "marvell,armada-370-corediv-clock";

reg = <0x18740 0xc>;

#clock-cells = <1>;

clocks = <&mainpll>;

clock-output-names = "nand";

};

[...]

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/41

Managing the device tree: simple example (1)

From drivers/clk/clk-fixed-rate.c

void __init of_fixed_clk_setup(struct device_node *node)

{

struct clk *clk;

const char *clk_name = node->name;

u32 rate;

if (of_property_read_u32(node, "clock-frequency", &rate))

return;

of_property_read_string(node, "clock-output-names", &clk_name);

clk = clk_register_fixed_rate(NULL, clk_name, NULL,

CLK_IS_ROOT, rate);

if (!IS_ERR(clk))

of_clk_add_provider(node, of_clk_src_simple_get, clk);

}

CLK_OF_DECLARE(fixed_clk, "fixed-clock", of_fixed_clk_setup);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/41

Managing the device tree: simple example (2)

From arch/arm/mach-mvebu/armada-370-xp.c
[...]

#include <linux/clk-provider.h>

[...]

static void armada_370_xp_timer_and_clk_init(void)

{

of_clk_init(NULL);

[...]

}

From drivers/clk/clk.c
void __init of_clk_init(const struct of_device_id *matches)

{

struct device_node *np;

if (!matches)

matches = __clk_of_table;

for_each_matching_node(np, matches) {

const struct of_device_id *match = of_match_node(matches, np);

of_clk_init_cb_t clk_init_cb = match->data;

clk_init_cb(np);

}

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/41

Declaration of clocks in DT: advanced example (1)

From arch/arm/boot/dts/armada-xp.dtsi

[...]

coreclk: mvebu-sar@d0018230 {

compatible = "marvell,armada-xp-core-clock";

reg = <0xd0018230 0x08>;

#clock-cells = <1>;

};

cpuclk: clock-complex@d0018700 {

#clock-cells = <1>;

compatible = "marvell,armada-xp-cpu-clock";

reg = <0xd0018700 0xA0>;

clocks = <&coreclk 1>;

};

[...]

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/41

Managing the device tree: advanced example (1)

From drivers/clk/mvebu/armada-xp.c (some parts removed)

static const struct coreclk_soc_desc axp_coreclks = {

.get_tclk_freq = axp_get_tclk_freq,

.get_cpu_freq = axp_get_cpu_freq,

.get_clk_ratio = axp_get_clk_ratio,

.ratios = axp_coreclk_ratios,

.num_ratios = ARRAY_SIZE(axp_coreclk_ratios),

};

static void __init axp_coreclk_init(struct device_node *np)

{

mvebu_coreclk_setup(np, &axp_coreclks);

}

CLK_OF_DECLARE(axp_core_clk, "marvell,armada-xp-core-clock",

axp_coreclk_init);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/41

Managing the device tree: advanced example (2)

From drivers/clk/mvebu/common.c (some parts removed)

static void __init mvebu_clk_core_setup(struct device_node *np,

struct core_clocks *coreclk)

{

const char *tclk_name = "tclk";

void __iomem *base;

base = of_iomap(np, 0);

/* Allocate struct for TCLK, cpu clk, and core ratio clocks */

clk_data.clk_num = 2 + coreclk->num_ratios;

clk_data.clks = kzalloc(clk_data.clk_num * sizeof(struct clk *),

GFP_KERNEL);

/* Register TCLK */

of_property_read_string_index(np, "clock-output-names", 0,

&tclk_name);

rate = coreclk->get_tclk_freq(base);

clk_data.clks[0] = clk_register_fixed_rate(NULL, tclk_name, NULL,

CLK_IS_ROOT, rate);

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/41

Hardware clock operations: device tree

I Expose the clocks to other nodes of the device tree using
of_clk_add_provider() which takes 3 parameters:

I struct device_node *np: Device node pointer associated
to clock provider. This one is usually received by the setup
function, when there is a match, with the array previously
defined.

I struct clk *(*clk_src_get)(struct of_phandle_args

*args, void *data): Callback for decoding clock. For the
devices, called through clk_get() to return the clock
associated to the node.

I void *data: context pointer for the callback, usually a
pointer to the clock(s) to associate to the node.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32/41

Exposing the clocks on DT: Simple example

From drivers/clk/clk.c

struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,

void *data)

{

return data;

}

From drivers/clk/clk-fixed-rate.c

void __init of_fixed_clk_setup(struct device_node *node)

{

struct clk *clk;

[...]

clk = clk_register_fixed_rate(NULL, clk_name, NULL,

CLK_IS_ROOT, rate);

if (!IS_ERR(clk))

of_clk_add_provider(node, of_clk_src_simple_get, clk);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33/41

Exposing the clocks in DT: Advanced example (1)

From include/linux/clk-provider.h

struct clk_onecell_data {

struct clk **clks;

unsigned int clk_num;

};

From drivers/clk/clk.c

struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec,

void *data)

{

struct clk_onecell_data *clk_data = data;

unsigned int idx = clkspec->args[0];

if (idx >= clk_data->clk_num) {

return ERR_PTR(-EINVAL);

}

return clk_data->clks[idx];

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34/41

Exposing the clocks in DT: Advanced example (2)

From drivers/clk/mvebu/common.c (some parts removed)

static struct clk_onecell_data clk_data;

static void __init mvebu_clk_core_setup(struct device_node *np,

struct core_clocks *coreclk)

{

clk_data.clk_num = 2 + coreclk->num_ratios;

clk_data.clks = kzalloc(clk_data.clk_num * sizeof(struct clk *),

GFP_KERNEL);

[...]

for (n = 0; n < coreclk->num_ratios; n++) {

[...]

clk_data.clks[2+n] = clk_register_fixed_factor(NULL, rclk_name,

cpuclk_name, 0, mult, div);

};

[...]

of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35/41

How device drivers use the CCF

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36/41

How device drivers use the CCF

I Use clk_get() to get the clock of the device

I Link between clock and device done either by platform data
(old method) or by device tree (preferred method)

I Managed version: devm_get_clk()

I Activate the clock by clk_enable() and/or clk_prepare()
(depending of the context), sufficient for most drivers.

I Manipulate the clock using the clock API

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37/41

Devices referencing their clock in the Device Tree

From arch/arm/boot/dts/armada-xp.dtsi

ethernet@d0030000 {

compatible = "marvell,armada-370-neta";

reg = <0xd0030000 0x2500>;

interrupts = <12>;

clocks = <&gateclk 2>;

status = "disabled";

};

From arch/arm/boot/dts/highbank.dts

watchdog@fff10620 {

compatible = "arm,cortex-a9-twd-wdt";

reg = <0xfff10620 0x20>;

interrupts = <1 14 0xf01>;

clocks = <&a9periphclk>;

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38/41

Example clock usage in a driver

From drivers/net/ethernet/marvell/mvneta.c
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,

struct mvneta_rx_queue *rxq, u32 value)

{

[...]

clk_rate = clk_get_rate(pp->clk);

val = (clk_rate / 1000000) * value;

mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);

}

static int mvneta_probe(struct platform_device *pdev)

{

[...]

pp->clk = devm_clk_get(&pdev->dev, NULL);

clk_prepare_enable(pp->clk);

[...]

}

static int mvneta_remove(struct platform_device *pdev)

{

[...]

clk_disable_unprepare(pp->clk);

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39/41

Conclusion

I Efficient way to declare and use clocks: the amount of code
to support new clocks is very reduced.

I More and more used:
I Most of the complex ARM SoCs have now finished their

migration
I Other architectures start to use it: MIPS, x86.

I Recent added features:
I Improve debugfs output by adding JSON style (since v3.9)
I Reentrancy which is needed for DVFS (since 3.10)
I Composite clock (since 3.10)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40/41

Questions?

Gregory CLEMENT

gregory.clement@free-electrons.com

Thanks to Thomas Petazzoni,(Free Electrons, working with me on
Marvell mainlining), Mike Turquette (Linaro, CCF maintainer)

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2013/elce/common-clock-

framework-how-to-use-it/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41/41

http://free-electrons.com/pub/conferences/2013/elce/common-clock-framework-how-to-use-it/
http://free-electrons.com/pub/conferences/2013/elce/common-clock-framework-how-to-use-it/

