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Gregory CLEMENT
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freely available under a Creative Commons license.
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I Contributing to kernel support for the Armada 370 and
Armada XP ARM SoCs from Marvell.

I Co-maintainer of mvebu sub-architecture (SoCs from Marvell
Embedded Business Unit)

I Living near Lyon, France
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Overview

I What the common clock framework is

I Implementation of the common clock framework

I How to add your own clocks

I How to deal with the device tree

I Use of the clocks by device drivers
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Clocks

I Most of the electronic chips are driven by clocks

I The clocks of the peripherals of an SoC (or even a board) are
organized in a tree

I Controlling clocks is useful for:
I power management: clock frequency is a parameter of the

dynamic power consumption
I time reference: to compute a baud-rate or a pixel clock for

example
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The clock framework

I A clock framework has been available for many years (it
comes from the prehistory of git)

I Offers a a simple API: clk_get, clk_enable,
clk_get_rate, clk_set_rate, clk_disable, clk_put,...
that were used by device drivers.

I Nice but had several drawbacks and limitations:
I Each machine class had its own implementation of this API.
I Does not allow code sharing, and common mechanisms
I Does not work for ARM multiplatform kernels.
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The common clock framework

I Started by the introduction of a common struct clk in early
2010 by Jeremy Kerr

I Ended by the merge of the common clock framework in
kernel 3.4 in May 2012, submitted by Mike Turquette

I Implements the clock framework API, some basic clock
drivers and makes it possible to implement custom clock
drivers

I Allows to declare the available clocks and their association to
devices in the Device Tree (preferred) or statically in the
source code (old method)

I Provides a debugfs representation of the clock tree

I Is implemented in drivers/clk
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Diagram overview of the common clock framework
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Interface of the CCF

Interface divided into two halves:
I Common Clock Framework core

I Common definition of struct clk
I Common implementation of the clk.h API (defined in

drivers/clk/clk.c)
I struct clk_ops: operations invoked by the clk API

implementation
I Not supposed to be modified when adding a new driver

I Hardware-specific
I Callbacks registered with struct clk_ops and the

corresponding hardware-specific structures (let’s call it
struct clk_foo for this talk)

I Has to be written for each new hardware clock

I The two halves are tied together by struct clk_hw, which is
defined in struct clk_foo and pointed to within
struct clk.
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Implementation of the CCF core
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Implementation of the CCF core

Implementation defined in drivers/clk/clk.c. Takes care of:

I Maintaining the clock tree

I Concurrency prevention (using a global spinlock for
clk_enable()/clk_disable() and a global mutex for all
other operations)

I Propagating the operations through the clock tree

I Notification when rate change occurs on a given clock, the
register callback is called.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/41



Implementation of the CCF core

Common struct clk definition located in
include/linux/clk-private.h:

struct clk {

const char *name;

const struct clk_ops *ops;

struct clk_hw *hw;

char **parent_names;

struct clk **parents;

struct clk *parent;

struct hlist_head children;

struct hlist_node child_node;

...

};
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Implementation of the CCF core

Implementation the API exposed to the drivers in two files:
I drivers/clk/clk.c:

void clk_prepare(struct clk *clk);

void clk_unprepare(struct clk *clk);

int clk_enable(struct clk *clk);

void clk_disable(struct clk *clk);

unsigned long clk_get_rate(struct clk *clk);

long clk_round_rate(struct clk *clk, unsigned long rate);

int clk_set_rate(struct clk *clk, unsigned long rate);

int clk_set_parent(struct clk *clk, struct clk *parent);

struct clk *clk_get_parent(struct clk *clk);

...

I drivers/clk/clkdev.c:
struct clk *clk_get(struct device *dev, const char *id);

void clk_put(struct clk *clk);

...

As well as the the managed interface version (devm_*) and the
device tree related version (of_*).
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Implementation of the hardware clock
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Implementation of the hardware clock

I Relies on .ops and .hw pointers

I Abstracts the details of struct clk from the
hardware-specific bits

I No need to implement all the operations, only a few are
mandatory depending on the clock type

I The clock is created once the operation set is registered using
clk_register()
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Implementation of the hardware clock

Hardware operations defined in include/linux/clk-provider.h

struct clk_ops {

int (*prepare)(struct clk_hw *hw);

void (*unprepare)(struct clk_hw *hw);

int (*is_prepared)(struct clk_hw *hw);

void (*unprepare_unused)(struct clk_hw *hw);

int (*enable)(struct clk_hw *hw);

void (*disable)(struct clk_hw *hw);

int (*is_enabled)(struct clk_hw *hw);

void (*disable_unused)(struct clk_hw *hw);

unsigned long (*recalc_rate)(struct clk_hw *hw,

unsigned long parent_rate);

long (*round_rate)(struct clk_hw *hw, unsigned long,

unsigned long *);

long (*determine_rate)(struct clk_hw *hw,unsigned long rate,

unsigned long *best_parent_rate,

struct clk **best_parent_clk);

int (*set_parent)(struct clk_hw *hw, u8 index);

u8 (*get_parent)(struct clk_hw *hw);

int (*set_rate)(struct clk_hw *hw, unsigned long);

void (*init)(struct clk_hw *hw);

};
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Operations to implement depending on clk capabilities

gate change rate single parent multiplexer root

.prepare

.unprepare

.enable y

.disable y

.is enabled y

.recalc rate y

.round rate y[1]

.determine rate y[1]

.set rate y

.set parent n y n

.get parent n y n

Legend: y = mandatory, n = invalid or otherwise unnecessary, [1]: at
least one of the two operations
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Hardware clock operations: making clocks available

The API is split in two pairs:
I .prepare(/.unprepare):

I Called to prepare the clock before actually ungating it
I Could be called in place of enable in some cases (accessed over

I2C)
I May sleep
I Must not be called in atomic context

I .enable(/.disable):
I Called to ungate the clock once it has been prepared
I Could be called in place of prepare in some case (accessed over

single registers in an SoC)
I Must not sleep
I Can be called in atomic context
I .is_enabled: Instead of checking the enable count, querying

the hardware to determine whether the clock is enabled.
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Hardware clock operations: managing the rates

I .round_rate: Returns the closest rate actually supported
by the clock. Called by clk_round_rate() or by
clk_set_rate() during propagation.

I .determine_rate: Same as .round_rate but allow to
select the parent to get the closet requested rate.

I .set_rate: Changes the rate of the clock. Called by
clk_set_rate() or during propagation.

I .recalc_rate: Recalculates the rate of this clock, by
querying hardware supported by the clock. Used internally to
update the clock tree.
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Hardware clock operations: managing the parents

As seen on the matrix, only used for multiplexers
I .get_parent:

I Queries the hardware to determine the parent of a clock.
I Currently only used when clocks are statically initialized.
I clk_get_parent() doesn’t use it, simply returns the

clk->parent internal struct

I .set_parent:
I Changes the input source of this clock
I Receives a index on in either the .parent_names or .parents

arrays
I clk_set_parent() translate clk in index
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Hardware clock operations: more callbacks

Callbacks that have been recently added for more specific need:
I .is_prepared:

I Queries the hardware instead of relying on the software
counter to check if a clock was prepared

I Can replace the .is_enable on some place

I .disable_unused:
I Needed when a clock should be disable because it is unused

but can’t use .disable.
I Introduced for OMAP needs

I .unprepared_unused:
I Introduced for the same reason that .disable_unused
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Hardware clock operations: base clocks

I The common clock framework provides 5 base clocks:
I fixed-rate: Is always running and provide always the same rate
I gate: Have the same rate as its parent and can only be gated

or ungated
I mux: Allow to select a parent among several ones, get the rate

from the selected parent, and can’t gate or ungate
I fixed-factor: Divide and multiply the parent rate by

constants, can’t gate or ungate
I divider: Divide the parent rate, the divider can be selected

among an array provided at registration, can’t gate or ungate

I Most of the clocks can be registered using one of these base
clocks.

I Complex hardware clocks have to be split in base clocks
I For example a gate clock with a fixed rate will be composed of

a fixed rate clock as a parent of a gate clock.
I A special clock type clk-composite allows to aggregate the

functionality of the basic clock types into one clock (since
kernel 3.10).
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Composite clocks

Composite clock allows to reuse existing base clock and to
aggregate them into a single clock:

I 3 base clocks can be used: mux, rate and gate

I For each base clock aggregated, an handle and the operation
set must be filled

I To register the composite clock, the following function is
used:
struct clk *clk_register_composite(struct device *dev, const char *name,

const char **parent_names, int num_parents,

struct clk_hw *mux_hw, const struct clk_ops *mux_ops,

struct clk_hw *rate_hw, const struct clk_ops *rate_ops,

struct clk_hw *gate_hw, const struct clk_ops *gate_ops,

unsigned long flags);
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Composite clocks: example

From drivers/clk/sunxi/clk-sunxi.c (some parts removed)

static void __init sun4i_osc_clk_setup(struct device_node *node)

{

struct clk *clk; struct clk_fixed_rate *fixed;

struct clk_gate *gate; const char *clk_name = node->name;

u32 rate;

/* allocate fixed-rate and gate clock structs */

fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);

[...]

of_property_read_u32(node, "clock-frequency", &rate);

/* set up gate and fixed rate properties */

gate->bit_idx = SUNXI_OSC24M_GATE;

[...]

fixed->fixed_rate = rate;

clk = clk_register_composite(NULL, clk_name, NULL, 0,

NULL, NULL, &fixed->hw, &clk_fixed_rate_ops,

&gate->hw, &clk_gate_ops, CLK_IS_ROOT);

of_clk_add_provider(node, of_clk_src_simple_get, clk);

[...]

}
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Hardware clock operations: device tree
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Hardware clock operations: device tree

I The device tree is the mandatory way to declare a clock
and to get its resources, as for any other driver using DT we
have to:

I Parse the device tree to setup the clock: the resources but
also the properties are retrieved.

I Declare the compatible clocks and associate it with an
initialization function using CLK_OF_DECLARE
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Declaration of clocks in DT: simple example (1)

From arch/arm/boot/dts/armada-370-xp.dtsi

[...]

clocks {

/* 2 GHz fixed main PLL */

mainpll: mainpll {

compatible = "fixed-clock";

#clock-cells = <0>;

clock-frequency = <2000000000>;

};

};

[...]

coredivclk: corediv-clock@18740 {

compatible = "marvell,armada-370-corediv-clock";

reg = <0x18740 0xc>;

#clock-cells = <1>;

clocks = <&mainpll>;

clock-output-names = "nand";

};

[...]
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Managing the device tree: simple example (1)

From drivers/clk/clk-fixed-rate.c

void __init of_fixed_clk_setup(struct device_node *node)

{

struct clk *clk;

const char *clk_name = node->name;

u32 rate;

if (of_property_read_u32(node, "clock-frequency", &rate))

return;

of_property_read_string(node, "clock-output-names", &clk_name);

clk = clk_register_fixed_rate(NULL, clk_name, NULL,

CLK_IS_ROOT, rate);

if (!IS_ERR(clk))

of_clk_add_provider(node, of_clk_src_simple_get, clk);

}

CLK_OF_DECLARE(fixed_clk, "fixed-clock", of_fixed_clk_setup);
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Managing the device tree: simple example (2)

From arch/arm/mach-mvebu/armada-370-xp.c
[...]

#include <linux/clk-provider.h>

[...]

static void armada_370_xp_timer_and_clk_init(void)

{

of_clk_init(NULL);

[...]

}

From drivers/clk/clk.c
void __init of_clk_init(const struct of_device_id *matches)

{

struct device_node *np;

if (!matches)

matches = __clk_of_table;

for_each_matching_node(np, matches) {

const struct of_device_id *match = of_match_node(matches, np);

of_clk_init_cb_t clk_init_cb = match->data;

clk_init_cb(np);

}

}
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Declaration of clocks in DT: advanced example (1)

From arch/arm/boot/dts/armada-xp.dtsi

[...]

coreclk: mvebu-sar@d0018230 {

compatible = "marvell,armada-xp-core-clock";

reg = <0xd0018230 0x08>;

#clock-cells = <1>;

};

cpuclk: clock-complex@d0018700 {

#clock-cells = <1>;

compatible = "marvell,armada-xp-cpu-clock";

reg = <0xd0018700 0xA0>;

clocks = <&coreclk 1>;

};

[...]
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Managing the device tree: advanced example (1)

From drivers/clk/mvebu/armada-xp.c (some parts removed)

static const struct coreclk_soc_desc axp_coreclks = {

.get_tclk_freq = axp_get_tclk_freq,

.get_cpu_freq = axp_get_cpu_freq,

.get_clk_ratio = axp_get_clk_ratio,

.ratios = axp_coreclk_ratios,

.num_ratios = ARRAY_SIZE(axp_coreclk_ratios),

};

static void __init axp_coreclk_init(struct device_node *np)

{

mvebu_coreclk_setup(np, &axp_coreclks);

}

CLK_OF_DECLARE(axp_core_clk, "marvell,armada-xp-core-clock",

axp_coreclk_init);
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Managing the device tree: advanced example (2)

From drivers/clk/mvebu/common.c (some parts removed)

static void __init mvebu_clk_core_setup(struct device_node *np,

struct core_clocks *coreclk)

{

const char *tclk_name = "tclk";

void __iomem *base;

base = of_iomap(np, 0);

/* Allocate struct for TCLK, cpu clk, and core ratio clocks */

clk_data.clk_num = 2 + coreclk->num_ratios;

clk_data.clks = kzalloc(clk_data.clk_num * sizeof(struct clk *),

GFP_KERNEL);

/* Register TCLK */

of_property_read_string_index(np, "clock-output-names", 0,

&tclk_name);

rate = coreclk->get_tclk_freq(base);

clk_data.clks[0] = clk_register_fixed_rate(NULL, tclk_name, NULL,

CLK_IS_ROOT, rate);

[...]

}
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Hardware clock operations: device tree

I Expose the clocks to other nodes of the device tree using
of_clk_add_provider() which takes 3 parameters:

I struct device_node *np: Device node pointer associated
to clock provider. This one is usually received by the setup
function, when there is a match, with the array previously
defined.

I struct clk *(*clk_src_get)(struct of_phandle_args

*args, void *data): Callback for decoding clock. For the
devices, called through clk_get() to return the clock
associated to the node.

I void *data: context pointer for the callback, usually a
pointer to the clock(s) to associate to the node.
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Exposing the clocks on DT: Simple example

From drivers/clk/clk.c

struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,

void *data)

{

return data;

}

From drivers/clk/clk-fixed-rate.c

void __init of_fixed_clk_setup(struct device_node *node)

{

struct clk *clk;

[...]

clk = clk_register_fixed_rate(NULL, clk_name, NULL,

CLK_IS_ROOT, rate);

if (!IS_ERR(clk))

of_clk_add_provider(node, of_clk_src_simple_get, clk);

}
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Exposing the clocks in DT: Advanced example (1)

From include/linux/clk-provider.h

struct clk_onecell_data {

struct clk **clks;

unsigned int clk_num;

};

From drivers/clk/clk.c

struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec,

void *data)

{

struct clk_onecell_data *clk_data = data;

unsigned int idx = clkspec->args[0];

if (idx >= clk_data->clk_num) {

return ERR_PTR(-EINVAL);

}

return clk_data->clks[idx];

}
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Exposing the clocks in DT: Advanced example (2)

From drivers/clk/mvebu/common.c (some parts removed)

static struct clk_onecell_data clk_data;

static void __init mvebu_clk_core_setup(struct device_node *np,

struct core_clocks *coreclk)

{

clk_data.clk_num = 2 + coreclk->num_ratios;

clk_data.clks = kzalloc(clk_data.clk_num * sizeof(struct clk *),

GFP_KERNEL);

[...]

for (n = 0; n < coreclk->num_ratios; n++) {

[...]

clk_data.clks[2+n] = clk_register_fixed_factor(NULL, rclk_name,

cpuclk_name, 0, mult, div);

};

[...]

of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);

}
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How device drivers use the CCF
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How device drivers use the CCF

I Use clk_get() to get the clock of the device

I Link between clock and device done either by platform data
(old method) or by device tree (preferred method)

I Managed version: devm_get_clk()

I Activate the clock by clk_enable() and/or clk_prepare()
(depending of the context), sufficient for most drivers.

I Manipulate the clock using the clock API

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37/41



Devices referencing their clock in the Device Tree

From arch/arm/boot/dts/armada-xp.dtsi

ethernet@d0030000 {

compatible = "marvell,armada-370-neta";

reg = <0xd0030000 0x2500>;

interrupts = <12>;

clocks = <&gateclk 2>;

status = "disabled";

};

From arch/arm/boot/dts/highbank.dts

watchdog@fff10620 {

compatible = "arm,cortex-a9-twd-wdt";

reg = <0xfff10620 0x20>;

interrupts = <1 14 0xf01>;

clocks = <&a9periphclk>;

};
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Example clock usage in a driver

From drivers/net/ethernet/marvell/mvneta.c
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,

struct mvneta_rx_queue *rxq, u32 value)

{

[...]

clk_rate = clk_get_rate(pp->clk);

val = (clk_rate / 1000000) * value;

mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);

}

static int mvneta_probe(struct platform_device *pdev)

{

[...]

pp->clk = devm_clk_get(&pdev->dev, NULL);

clk_prepare_enable(pp->clk);

[...]

}

static int mvneta_remove(struct platform_device *pdev)

{

[...]

clk_disable_unprepare(pp->clk);

[...]

}
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Conclusion

I Efficient way to declare and use clocks: the amount of code
to support new clocks is very reduced.

I More and more used:
I Most of the complex ARM SoCs have now finished their

migration
I Other architectures start to use it: MIPS, x86.

I Recent added features:
I Improve debugfs output by adding JSON style (since v3.9)
I Reentrancy which is needed for DVFS (since 3.10)
I Composite clock (since 3.10)
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Questions?

Gregory CLEMENT

gregory.clement@free-electrons.com

Thanks to Thomas Petazzoni,(Free Electrons, working with me on
Marvell mainlining), Mike Turquette (Linaro, CCF maintainer)

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2013/elce/common-clock-

framework-how-to-use-it/
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