
Effective Scripting in
Embedded Devices

Steve Bennett

ELC 2010

1

ELC 2010

What is Embedded?

2

ELC 2010

Creating an Embedded
Product

• Time to market

• Quality

• Features

• Cost

• Size

• Performance

• Linux kernel

• uClibc

• Busybox

• Other open source

• Custom drivers

• Custom applications

3

ELC 2010

Embedded Applications

Greenspun’s Tenth Rule
Any sufficiently complicated C program contains an

ad-hoc, informally-specified, bug-ridden, slow
implementation of half of a scripting language.

• C++ toolchain
• Boost
• PostgreSQL

• byte order
• unaligned access

Embedded Minimalists Application Porters

• linked list
• hash table
• exec wrapper

• config parser
• customisation API

4

ELC 2010

Language Strengths

• Bit/byte twiddling

• Efficient storage

• Access entire
system API

• Compiled code

C/C++ Scripting

• String mangling

• Lists, Dictionaries

• Searching, Sorting

• Customisation

6

ELC 2010

Make it Fit

App space
75%

uClibc
3%

Config
6%

Kernel
13%

Boot loader
3%

Percentage of 8MB NOR flash used

7

ELC 2010

Make it work

App space
53%

openssh
1%

strace
2%

iptables
1%

bash
3%

ssl/libcrypto
7%

snmpd
8%

uClibc
3%

Config
6%

Kernel
13%

Boot loader
3%

Percentage of 8MB NOR flash used

8

ELC 2010

Add Scripting
Perl

Python

Tcl 8.4

bash

ash

TinyTcl

lua

Jim

0% 50% 100% 150%

Percentage of available space used by “core” scripting language

App space
75%

uClibc
3%

Config
6%

Kernel
13%

Boot loader
3%

9

ELC 2010

Languages Attributes

Python

C
C++

Java

PerlLua

Jim
Tcl

R
es

ou
rc

e
E

ffi
ci

en
t

Slow Development

Rapid Development

R
es

ou
rc

e
H

un
gr

y

ash bash

10

ELC 2010

Growth over Time

0.99 1.2 1.3 2.0 2.2 2.4 2.6

Minimal Linux Kernel

Note: Sizes are indicative only

11

ELC 2010

Making big things small

• It is hard since all features are critical to
someone

• Minimal Tcl - 5+ years with no progress

• Deeply Embedded Python - abandoned

• miniperl - unsupported

• Much easier to start small and focussed

12

ELC 2010

Size - Speed
All things being equal, large applications and libraries are slower

to load and run than small applications and libraries

System Time
System
Calls

Relocations

Intel(R) Core(TM)2 Quad CPU

2.33GHz, 4GB RAM

Tcl 8.4 (glibc)

43ms 173 3740

XScale-IXP42x (v5b)

266MHz, 32MB RAM

Jim Tcl (uClibc)

1ms 37 766

Simple ‘Hello World’ Test

13

ELC 2010

Case Study
Automated Testing

Expect + inetd + TinyTcl

Device
under Test

TinyTcl
Test

Script

Test Host

(Expect)

telnet

Tcl scripts

14

ELC 2010

source $testlib
use netconf net
test cable {
 # Find a dhcp connection we can use
 array set conn [netconf_find dhcp]
 # Configure it
 remote dev=$conn(dev) devname=$conn(devname) {
 config load -update
 set eth [config ref eth<devname=$dev>]
 set o [config new dhcp interface $eth]
 config set $o type cable
 if {$devname != "eth0"} {
 config set $o fwclass wan
 }
 config set $eth conn $o
 config save
 }
 # Wait for it to come up
 net_wait $conn(intf)

 pass "cable connection on $conn(intf) OK"
}

15

ELC 2010

Case Study
Web Framework

web server
(C)

cgi app
(script)

web server
(C)

framework
(C)

application
(script)

Traditional

Embedded
Scripting

16

ELC 2010

µWeb
C-based Customisation

Web
Framework

C Framework API

C-based customisation

ca
llb

ac
k

ev
en

ts

17

ELC 2010

submit -c {
 const char *tz = cgi_get("tz");
 /* find timezone spec for selected TZ */
 FILE *fh = fopen(ZONEFILE, "r");
 while ((fgets(buf, sizeof(buf), fh) != NULL) {
 /* parse line,
 * match timezone,
 * write to /etc/TZ
 */
 ...
 }
 fclose(fh);

 /* write ntpserver */
 snprintf(buf, "%s/ntpserver", cgi_configdir());
 fh = fopen(buf, "w");
 fprintf(fh, "%s\n", cgi_get("ntpserver");
 fclose(fh);

 /* should use msntp.pid, ...*/
 system("killall msntp");
}

18

ELC 2010

µWeb
Jim Tcl Scripting

Web
Framework

C Framework API

ca
llb

ac
k

ev
en

ts

Tc
l C

al
lb

ac
k

G
lu

e
Jim Tcl

Tcl-based customisation

Tcl Web Binding

19

ELC 2010

submit -tcl {
 # read timezones
 set zones [readfile $ZONEFILE]

 # write /etc/TZ
 writefile /etc/TZ $zones([cgi get tz])

 # write ntpserver
 writefile $CONFDIR/ntpserver [cgi get ntpserver]

 # kill (and respawn) msntp
 kill -TERM [readfile /var/run/msntp.pid]
}

20

ELC 2010

What scriptlets do

• Access application API (Tcl commands)

• Examine/update strings, lists, arrays

• Use standard Tcl commands

• Interact with OS - files, commands,
processes

21

ELC 2010

How Fast is it?
C-based

Now here the architecture is extended to support customisation
via a scripting language, Jim Tcl [3], instead of via C-based
callbacks 3 .

In this case, application-specific functionality is implemented as
Tcl scriptlets. These are small scripts which are executed to
provide the functionality for a single request.

When an event occurs, a thin Tcl callback layer causes the
appropriate Tcl scriptlet to be invoked. The scriptlet has access
to the framework API via a Tcl binding. It also has access to all
the Tcl commands.

Here is a typical scriptlet.

Web
Framework

C Framework API

C-based customisation

c
a

ll
b

a
c

k
 e

v
e

n
ts

Web
Framework

C Framework API

c
a

ll
b

a
c

k
 e

v
e

n
ts

Tc
l
C

a
ll
b

a
c

k

G
lu

e

Jim Tcl

Tcl-based customisation

Tcl Web
Binding

submit -tcl {
 set zones [readfile $zonefile]
 writefile $tzfile $zones([cgi get tz])
 writefile [cgi configdir]/ntpserver \
 [cgi get ntpserver]
 catch {exec killall msntp}
}

All the core framework APIs are bound under a single
command, cgi. It is straightforward to create the C-Tcl binding
and in general the Tcl API is easier to use than the C API,
mainly thanks to default arguments, untyped values and built-in
lists and arrays/dictionaries.

With all the heavy lifting done by the framework, meeting
overall performance requirements is generally quite easy. As
mentioned earlier, the creation and initialisation of the
interpreter needs to be very fast. On the order of 10ms or less.

Here is the timing for a typical request4:

Notice that although the time to create the interpreter and run
the script is 21 times longer than for the C version, the total
response time is not significantly different and the total
response time is well below 250ms where the system may
appear sluggish.

On the other hand, implementing the Tcl version of the script is
far easier than implementing the C version.

6.1 What can an extension script do?
Unlike an extension written in C, a script-based extension does
not have unfettered access to libc and system calls. So what can
a script do?

Firstly, the script must be able to access and manipulate
application objects and state. In the case of !Web, this means
Tcl access to the C-based extension API.

Secondly, the script will use the language features such as list
and string manipulation and flow-of-control commands.

Thirdly, the script must be able to interact with the system. This
means:

• Reading and writing files (especially config, /proc, /sys, etc)

• Examining filesystem state (glob, file)

• Running commands (exec)

• Parsing files and command output (regexp, regsub, string)

• Sending signals to processes (kill)

round trip latency 38ms

interpreter creation 4ms

POST scriptlet 17ms

display scriptlet 2ms

framework processing 12ms

Total response 73ms

And similarly when handling a request completely in C:

 round trip latency 38ms

 POST scriptlet 1ms

 display scriptlet 2ms

 framework processing 12ms

Total response 53ms

3 The real framework allows any callback to be implemented in either C or Tcl. This allows omitting the scripting language entirely if
space is at a premium, or allows certain functionality to use C where this makes system interfacing simpler or in performance-critical
situations.

4 Timing tests were performed on an IXP420-based systems @ 266MHz

22

ELC 2010

How Fast is it?
Tcl Scripting

Now here the architecture is extended to support customisation
via a scripting language, Jim Tcl [3], instead of via C-based
callbacks 3 .

In this case, application-specific functionality is implemented as
Tcl scriptlets. These are small scripts which are executed to
provide the functionality for a single request.

When an event occurs, a thin Tcl callback layer causes the
appropriate Tcl scriptlet to be invoked. The scriptlet has access
to the framework API via a Tcl binding. It also has access to all
the Tcl commands.

Here is a typical scriptlet.

Web
Framework

C Framework API

C-based customisation

c
a

ll
b

a
c

k
 e

v
e

n
ts

Web
Framework

C Framework API

c
a

ll
b

a
c

k
 e

v
e

n
ts

Tc
l
C

a
ll
b

a
c

k

G
lu

e

Jim Tcl

Tcl-based customisation

Tcl Web
Binding

submit -tcl {
 set zones [readfile $zonefile]
 writefile $tzfile $zones([cgi get tz])
 writefile [cgi configdir]/ntpserver \
 [cgi get ntpserver]
 catch {exec killall msntp}
}

All the core framework APIs are bound under a single
command, cgi. It is straightforward to create the C-Tcl binding
and in general the Tcl API is easier to use than the C API,
mainly thanks to default arguments, untyped values and built-in
lists and arrays/dictionaries.

With all the heavy lifting done by the framework, meeting
overall performance requirements is generally quite easy. As
mentioned earlier, the creation and initialisation of the
interpreter needs to be very fast. On the order of 10ms or less.

Here is the timing for a typical request4:

Notice that although the time to create the interpreter and run
the script is 21 times longer than for the C version, the total
response time is not significantly different and the total
response time is well below 250ms where the system may
appear sluggish.

On the other hand, implementing the Tcl version of the script is
far easier than implementing the C version.

6.1 What can an extension script do?
Unlike an extension written in C, a script-based extension does
not have unfettered access to libc and system calls. So what can
a script do?

Firstly, the script must be able to access and manipulate
application objects and state. In the case of !Web, this means
Tcl access to the C-based extension API.

Secondly, the script will use the language features such as list
and string manipulation and flow-of-control commands.

Thirdly, the script must be able to interact with the system. This
means:

• Reading and writing files (especially config, /proc, /sys, etc)

• Examining filesystem state (glob, file)

• Running commands (exec)

• Parsing files and command output (regexp, regsub, string)

• Sending signals to processes (kill)

round trip latency 38ms

interpreter creation 4ms

POST scriptlet 17ms

display scriptlet 2ms

framework processing 12ms

Total response 73ms

And similarly when handling a request completely in C:

 round trip latency 38ms

 POST scriptlet 1ms

 display scriptlet 2ms

 framework processing 12ms

Total response 53ms

3 The real framework allows any callback to be implemented in either C or Tcl. This allows omitting the scripting language entirely if
space is at a premium, or allows certain functionality to use C where this makes system interfacing simpler or in performance-critical
situations.

4 Timing tests were performed on an IXP420-based systems @ 266MHz

23

ELC 2010

Timing Comparison
C-based Tcl-Based

round trip latency

interpreter creation

POST scriptlet

display scriptlet

framework processing

Total response

38ms 38ms

- 4ms

1ms 17ms

2ms 2ms

12ms 12ms

53ms 73ms

24

ELC 2010

Possible Applications

• control cameras, frame rate, image
processing, network access

• environmental sensor data gathering,
analysis

• industrial control

25

ELC 2010

Scripting Language
Requirements

• Written in portable C

• Designed to be embedded, not standalone

• Small

• Fast to start

• Modular, to allow unneeded features to be
removed

• BSD or equivalent licence

26

ELC 2010

• 10x speed of TinyTcl, 50% of Tcl 8.4

• Small (80-150KB)

• Designed for embedding

• BSD licence

Jim - Tcl for a small world

27

ELC 2010

Jim Tcl Features
• regular expressions

• exec

• associative arrays, lists

• file, glob, open, close,
read, write

• functional programming

• accurate error reporting

• arrays as first class
objects

• 64 bit integers

• strings containing nulls

• list expansion operator

• simple packages

• event loop, sockets

28

ELC 2010

Lua

• Designed for embedding

• Portable

• Small

• Byte code

• BSD licence

• Used in World of Warcraft

29

ELC 2010

Other Scripting
Languages

• Pawn (formerly Small)

• Pike

• Nesla

30

ELC 2010

Leveraging Scripting
Ad-hoc scripts

Vendor/product Version 1.0 Mar 19 12:23:35 EST 2010

 1. Modem 1 [Active]
 2. Modem 2 [Not Installed]
 k. Modulation Control [Running]
 t. Modem Test Signal (0x1B) [None (0)]
 m. Modulation (0x01) [QPSK (0x00)]
 q. Quit

Select option []:

Simple Menuing System for Internal Use

31

ELC 2010

Leveraging Scripting
Prototyping

• Fills the gap between shell scripts and C

• Small daemons

• Configure systems

• Exec commands

• Parse files

• Reload config on SIGHUP

32

ELC 2010

Leveraging Scripting
Replace Complex Shell Scripts

• String and data structure manipulation

• Invocations of sed/awk/grep are slow

• Shell quoting hell

• No floating point math

• Start-up time may be critical

33

ELC 2010

Leveraging Scripting
“Free” CLI

• Easy to add Command Line Interface

• User Interaction

• Debugging

• Possible mechanisms:

• Unix domain sockets

• Special startup mode

34

ELC 2010

Pitfalls

• Excessive stack usage

• Unicode support

• No-MMU support

• Licencing

• IP Leaking

35

ELC 2010

More about Jim Tcl

• Expand operator

• List-dictionary duality

• Source location tracking

• Get it:

• http://jim.workware.net.au/

36

