
R&D Center, Sony Group Corporation

Flutter for Embedded Systems

Hidenori Matsubayashi

05/27/2021

HidenoriMatsubayashi

Hidenori.Matsubayashi@sony.com

Copyright 2021 Sony Group Corporation

https://github.com/HidenoriMatsubayashi
mailto:Hidenori.Matsubayashi@sony.com

Announcing Flutter at Google I/O 2021

2
Google I/O 2021 keynote: https://youtu.be/a553D0s7HeE?t=1778

https://youtu.be/a553D0s7HeE?t=1778

Flutter for embedded use - Sony

3

Flutter for Embedded Linux :
https://github.com/sony/flutter-embedded-linux

Announcing Flutter 2.2 at Google I/O 2021 | by Tim Sneath |
Flutter | May, 2021 | Medium

https://github.com/sony/flutter-embedded-linux
https://medium.com/flutter/announcing-flutter-2-2-at-google-i-o-2021-92f0fcbd7ef9

Flutter for embedded use - Samsung

4

Tizen for Flutter :
https://github.com/flutter-tizen

Announcing Flutter 2.2 at Google I/O 2021 | by Tim Sneath |
Flutter | May, 2021 | Medium

https://github.com/flutter-tizen
https://medium.com/flutter/announcing-flutter-2-2-at-google-i-o-2021-92f0fcbd7ef9

Flutter for embedded use - Toyota

5
Announcing Flutter 2.2 at Google I/O 2021 | by Tim Sneath |
Flutter | May, 2021 | Medium

AGL (Toyotaʼs in-vehicle use) :
Keynote (Flutter Engage) ‒ YouTube

https://medium.com/flutter/announcing-flutter-2-2-at-google-i-o-2021-92f0fcbd7ef9
https://www.youtube.com/watch?t=1964&v=zSbsIiluixw&feature=youtu.be

Agenda

1. Overview of modern Linux graphics
l Window Manager: X11, Wayland
l Graphics API: Open GL ES, EGL
l Framebuffer API: GBM, EGLStream
l Kernel module: DRM, KMS

2. Flutter and its architectural overview
l Flutter overview
l Flutter internal architecture
l Arm64 for Flutter Linux support
l Bindings to native code
etc.

3. Introduction to “Flutter for embedded Linux”
l Overview & Objective
l Features
l Future works
etc.

6

Agenda

1. Overview of modern Linux graphics
l Window Manager: X11, Wayland
l Graphics API: Open GL ES, EGL
l Framebuffer API: GBM, EGLStream
l Kernel module: DRM, KMS

2. Flutter and its architectural overview
l Flutter overview
l Flutter internal architecture
l Arm64 for Flutter Linux support
l Bindings to native code
etc.

3. Introduction to “Flutter for embedded Linux”
l Overview & Objective
l Features
l Future works
etc.

7

Window Manager

Input event

User application

UI toolkit

H/W

Overview of modern Linux graphics stack

8

Linux Kernel

CPU (x64, Arm64, RISCV, etc)

DRM KMS

Mesa /
Vendor library

X11

OpenGL

GBMEGLStreamEGL

OpenGL ES

GTK Qt SDL WebKit Flutter Unity …

Wayland

app1 app2 …

libdrm

Kernel

Display Controller

libdrm_*

GPU

libEvdev

evdev

libinput libudev U
serland

UI toolkit examples (Except for toolkits that only focused on Android, iOS, or desktops)

Category Name Software License Main Maintainer
Web-based Electron MIT License GitHub

NW.js MIT License Intel
Chromium BSD 3-Clause Google
WebKit LGPL, BSD Apple
Gecko Mozilla Public License 2.0 Mozilla

Desktop-based GTK LGPL v2.1+ GNOME
Qt Commercial License (or GPL/LGPL v3.0) Qt Company
Mono MIT, BSD, GPL etc. Microsoft (Xamarin)
SDL zlib License - (OSS Community)
Kivy MIT License - (OSS Community)
wxWidgets wxWindows License - (OSS Community)
openFrameworks MIT License - (OSS Community)

Mobile-based Flutter BSD 3-Clause Google
Kotlin Multiplatform Apache License 2.0 Jet Brains

Game-based Unreal Engine Commercial License (depends on sales) Epic Games
Unity Commercial License (depends on sales) Unity

9

Window Manager: X11, Wayland

10

Ø Window Manager
Window manager is system software that controls
the placement and appearance of windows within a
windowing system

Ø X11 (X Window System)
• https://www.x.org/wiki/
• X Window System (X11, or simply X) is a

windowing system for bitmap displays, common
on Unix-like operating systems

Ø Wayland
• https://wayland.freedesktop.org/
• Next-generation window manager that will

replace X11
• Wayland is a communication protocol that

specifies the communication between a display
server and its clients

Window Manager

Shell
(System UI)

Window System

・Look & feel
・Window Decoration
・Window Layout
・Context Menu
・Menu bar
・App Launcher

Input Manager

Compositor
(Display Server)

・Fetch Event
・Dispatch Event
・Virtual Event

・Window Management
・Window Composition
・Transit Animation
・Layer management
・Multiple Display

https://www.x.org/wiki/
https://wayland.freedesktop.org/

Wayland

Ø Ubuntu 21 enabled Wayland graphics by default

Ø Wayland is a lightweight than X11
• Wayland just requires far fewer libraries than X11

Ø Board Support Package (BSP)
• Many SoC vendors support Wayland (Weston)

11

Vendor SoC/Board/
Platform

Window Manager Notes

X11 Wayland

NXP i.MX 8M × ○ X11 isn’t supported after i.MX 6

Xilinx Zynq ○ ○ Peta Linux supports Wayland from 2019.2

NVIDIA Jetson ○ ○ -

Qualcomm RB5 ○ ○ SoC: SD865

Raspberry Pi4 Broadcom BCM2711 ○ △ -

○ ･･･ Official Support
△ ･･･ Unofficial (3rd party)
× ･･･ Not supported

Ubuntu 21.04 is here | Ubuntu

https://ubuntu.com/blog/ubuntu-21-04-is-here

Mesa / Vendor library

Graphics library

12

Ø OpenGL, OpenGL ES
OpenGL (Open Graphics Library) is a cross-language, cross-
platform application API for rendering 2D and 3D vector
graphics

Ø EGL
An interface between Khronos rendering APIs (such as
OpenGL, OpenGL ES or OpenVG) and the underlying native
platform windowing system

Ø Generic Buffer Management (GBM)
• An abstraction of the graphics driver specific buffer

management APIs
• Allocating buffers for graphics rendering

Ø EGLStream
• EGLStream is a mechanism that efficiently transfers a

sequence of image frames from one API to another
• Nvidia only supports EGLStream

Kernel DRM KMS

OpenGL

GBM

OpenGL ES

Libdrm Libdrm-driver

EGLStreamEGL

Vender specific

Abstraction
Layer

NVIDIA supports
(Not use GBM)

Abstraction
Layer

H/W

Linux Kernel

Kernel module: DRM / KMS

13

Ø Direct Rendering Manager (DRM)
• One of Linux kernel module (/dev/dri/card0, etc.)
• Draw graphics to frame buffer directly
• Authentication

Ø Kernel Mode Setting (KMS)
• Display settings such as resolution and color depth

DRM KMS

GPU Display
Controller

DRM APIs

See: https://dri.freedesktop.org/docs/drm/gpu/index.html

CRTC Encoder ConnectorFramebuffer Monitor

DRM device

Framebuffer

Plane

Plane

https://dri.freedesktop.org/docs/drm/gpu/index.html

Agenda

1. Overview of modern Linux graphics
l Window Manager: X11, Wayland
l Graphics API: Open GL ES, EGL
l Framebuffer API: GBM, EGLStream
l Kernel module: DRM, KMS

2. Flutter and its architectural overview
l Flutter overview
l Flutter internal architecture
l Arm64 for Flutter Linux support
l Bindings to native code
etc.

3. Introduction to “Flutter for embedded Linux”
l Overview & Objective
l Features
l Future works
etc.

14

What is Flutter?

15

Ø https://flutter.dev/

Ø Flutter is Googleʼs UI toolkit for building beautiful, natively compiled applications

Ø Released in 2017

Ø Original rendering engine using Skia

Ø Programing language: Dart

Ø Supported platforms from a single source code
• Mobile (Android/iOS)
• Web
• Desktops (Linux/Windows/macOS): β version

ü Official version will come within 2021?

https://flutter.dev/

Flutter Roadmap (History)

16

2018/12 Stable version

2021/3 Stable version

2021/3 Beta version

Google’s partners

iOS Android Web Windows macOS Linux Embedded

Microsoft CANONICAL

google/flutter-desktop-embedding
Desktops for Flutter has started as a stand-alone project since Feb 2018

It has merged into flutter /engine in 2019 or 2020

？

https://github.com/google/flutter-desktop-embedding
https://github.com/flutter/engine

Pros & Cons of Flutter

17

Ø Pros
• Easy to create beautiful UI
• Create a prototype quickly using Adobe XD, etc.
• A lot of 3rd libraries (plugins), documents, and information
• Native compiled applications, strongly debug function like hot-reload
• Cross-platform
• Package management system and test tools (Dart SDK)
• Support of major IDEs like VS Code
• Active community
• Embedded use cases

ü Custom embedder API-layer for specific platforms
ü Flutter Engine requires just fewer library dependencies
ü Easy access to other native codes and hardware resources
ü BSD 3-Clause licensed software

Ø Cons
• Need to study Dart
• Platform-specific features like media players need to be implemented natively
• Lighter than WebView, but might be heavier than native apps (We need to benchmark)

Apps made with Flutter

18
https://flutter.dev/showcase

https://flutter.dev/showcase

Flutter Widget

19

Ø In Flutter, Widget is the UI component to declare and construct UI

Ø See: Widget catalog - Flutter

https://flutter.dev/docs/development/ui/widgets

Famous Flutter apps examples

20

https://gallery.flutter.dev/#/

Ø https://github.com/flutter/gallery
Flutter Gallery is an official resource and example app to help developers evaluate and use Flutter

Ø https://github.com/gskinnerTeam/flokk

Ø https://github.com/gskinnerTeam/flutter-folio

https://flutter.gskinner.com/flokk/

https://gallery.flutter.dev/
https://github.com/flutter/gallery
https://github.com/gskinnerTeam/flokk
https://github.com/gskinnerTeam/flutter-folio
https://flutter.gskinner.com/flokk/

Flutter plugin

21

Ø A lot of official and 3rd party libraries (Flutter plugins) on pub.dev

Ø Flutter SDK provides a package management function to make developers install Flutter plugins easily

Ø Plugins
Flutter is just the UI toolkit. It means not includes platform native features like a media player. You need to implement it yourself or use 3rd
party one

https://pub.dev/

Dart programming language

22

Ø Dart is been developing by Google from 2011 to be used to build server and desktop applications.
Development started with the goal of replacing JavaScript

Ø Dart 1.0 release: Nov 2013
• Latest stable version: 2.13.0

Ø Null Safety support

Ø Dart language specification is quite close to JavaScript, and it is said it is a language with very low learning
cost for developers who are familiar with JavaScript, Java, or C++

Ø Dart compiler
• Dart to JavaScript
• Dart to native (machine code JIT and AOT)

Ø Binding to native code / IPC
• dart:ffi (FFI stands for foreign function interface)
• Unix Domain Socket in dart:io
• 3rd party library: gRPC, Dbus etc.

DartPad

23

Ø https://dartpad.dev/flutter

Ø DartPad is a free, open-source online editor to help developers learn about Dart and Flutter

https://dartpad.dev/flutter

Hot reload

24

Ø Hot reload helps developers quickly and easily create UIs, and fix bugs

Ø Developers can inject updated source code files into the running Flutter apps without relaunch it

Excerpt from https://github.com/flutter/flutter

https://github.com/flutter/flutter

Flutter repo and development workflow

25

Source code
on GitHub

Google Infra Server

Build

Test

Deploy

linux-x64 android-
x64

android-
x64

android-
arm64

windows-
x64

darwin-x64

…

Flutter Engine

Flutter SDK
1. git clone or download from flutter.dev

2. Automatic download
artifacts as needed by
Flutter SDK

Flutter app developers

3. Create Flutter apps
4. Build Flutter apps

Quick start on Ubuntu Linux Hosts

26

Install Flutter SDK
$ git clone https://github.com/flutter/flutter
$ sudo mv flutter /opt/
$ export PATH=$PATH:/opt/flutter/bin

Install dependent packages
$ sudo apt install clang curl pkg-config ninja-build cmake libgtk-3-dev libblkid-dev liblzma-dev unzip

Enable Flutter desktop for Linux
$ flutter config --enable-linux-desktop

Run Flutter sample app
$ flutter create sample
$ cd sample
$ flutter run –d linux

Flutter sample app & Widget tree

27

Sample app

Widget tree

Source code

Flutter architecture overview

Framework
(Dart)

Material

Widgets

Engine
(C/C++)

Embedder
(Java, C++, ..)

Platform

3rd-party OSS

Android / iOS / Linux / macOS / Windows

Flutter user apps (Dart)

Cupertino

Rendering

Animation Painting Gestures
Foundation

dart-vm Skia Txt

Render Surface Setup Native Plugins Packaging

Vsync Waiter Thread Setup Event Loop Interop

Service Protocol Composition Platform Channels

Dart Isolate Setup Rendering System Events

Dart VM
Management

Frame Scheduling Asset Resolution

Frame Pipelining Text Layout

28

Porting layer for specific platforms

…

• Written in Dart language
• Create UI by using widgets
• Works on Dart-VM

• Graphics Engine by being written in C/C++
• Provide graphics shell
• Manage Dart-VM
• Drawing by using Skia

etc. Runtime

Framework

Embedder API

29

Ø https://github.com/flutter/flutter/wiki/Custom-Flutter-Engine-
Embedders

Ø Flutter desktops (Linux / macOS / Windows) use this API
• Android and iOS arenʼt using it. The API were created for Flutter desktops?

Ø Header file
• https://github.com/flutter/engine/blob/master/shell/platform/embedder/embedder.h

https://github.com/flutter/flutter/wiki/Custom-Flutter-Engine-Embedders
https://github.com/flutter/engine/blob/master/shell/platform/embedder/embedder.h

Arm64 Linux support (One of our contributions to Flutter)

30

Ø Currently, Flutter supports desktop for Arm64
Linux hosts. Also, Flutter SDK works on
Arm64 Linux hosts

Ø Flutter works on general Arm64 devices such
as Raspberry Pi4 and Jetson Nano

Raspberry Pi4 Jetson Nano

What’s new in Flutter 2.2 | Flutter (medium.com)

https://medium.com/flutter/whats-new-in-flutter-2-2-fd00c65e2039

Binding to native code in Flutter

Ø Binding to native code
• Communication APIs are provided by Flutter

ü Method Channel
ü Event Channel
ü Basic Message Channel

• dart:ffi
ü Foreign Function Interface for interoperability with C programming language

Ø Inter-process communication (IPC)
• Unix domain sockets in dart:io
• 3rd party library

ü A native Dart client implementation of D-Bus: https://github.com/canonical/dbus.dart
ü grpc-dart: https://github.com/grpc/grpc-dart

…

31

https://github.com/canonical/dbus.dart
https://github.com/grpc/grpc-dart

Embedder
(Java, C++, Objective-C)

Framework
(Dart)

Flutter
user apps
(Dart)

Communication APIs are provided by Flutter

32

Dart
code

Engine
(C/C++)

Platform Channel Platform
Channel

Binary Messenger

Method
Channel

Event
Channel

Basic
Message
Channel

Binary Messenger

Method
Channel

Event
Channel

Basic
Message
Channel

Platform
(Native)

Native
code

Flutter plugin: Unix domain socket support in grpc-dart

Flutter
(Dart) grpc-dart Other

Process

API
(gRPC)

Other
Process

HTTP/2
(External)

UDS
(Internal)

33

https://pub.dev/packages/grpc

Use case
ü IPC between dart or other language:

Unix domain socket
ü External communication between the

device and other devices: HTTP/2

Ø grpc-dart is the gRPC library in Dart implementation

Ø We have contributed to add Unix Domain Socket support to grpc-dart

https://pub.dev/packages/grpc

Agenda

1. Overview of modern Linux graphics
l Window Manager: X11, Wayland
l Graphics API: Open GL ES, EGL
l Framebuffer API: GBM, EGLStream
l Kernel module: DRM, KMS

2. Flutter and its architectural overview
l Flutter overview
l Flutter internal architecture
l Arm64 for Flutter Linux support
l Bindings to native code
etc.

3. Introduction to “Flutter for embedded Linux”
l Overview & Objective
l Features
l Future works
etc.

34

Flutter for Embedded Linux

35

Ø Overview
• Porting Flutter to embedded Linux systems

Ø Objective
• Use Flutter in embedded systems

Ø Non-goal
• Not intended to replace the existing Flutter

desktop for Linux in desktop use cases
• Objective is just for Embedded Systems use

cases

Open-source: https://github.com/sony/flutter-embedded-linux

https://github.com/sony/flutter-embedded-linux

Features

36

Ø Flutter embedder optimized for embedded systems

Ø Both x64 architecture and Arm64 architecture support

Ø Lightweight than Flutter desktop for Linux (without X11 and
GTK/GDK)

Ø Wayland, DRM (GBM or EGLStream) backends support

Ø Single full-screen or flexible-screen

Ø Keyboard, touch, mouse, clipboard support

Ø API compatibility with Flutter desktop for Windows
• External texture plugin (texture composition in Flutter) for media player,

etc.
• Based on Flutter desktop for Windows

Initially, it was created with full scratch, but we changed from the middle

etc.

Framework (Dart)

Engine (C/C++)

Embedder for Embedded Linux (C++)

Flutter user apps (Dart)

Wayland

Linux platform

DRM udev libinput

Event Loop

Platform Channels for Native Plugins

Render Surface Management

Input Event Management

Flutter Engine Management

Objective of open-source

37

Ø We are looking for partners to develop together
• Itʼs difficult to cover all embedded

specifications for Sony alone
• Google Flutter team is closely us

Ø Contribution
• Welcome all your contribution and feedbacks

ü If you want to send a PR, you need to accept our CLA
ü CLA is still under construction...

Ø Target the mainline
• Propose and contribute this software to the

mainline of Flutter Engine repo, which means
we would like to add embedded systems
support into Flutter for all embedded
developers in the future

Now

Future

Sony repo
in GitHub

Bug reports

Future requests

Pull requests

Flutter
Engine
repo

in GitHub

Develop by the Flutter community
For all embedded developers / companies

Contribution

https://github.com/flutter/engine

Why is this embedder necessary instead of “Flutter desktop for Linux”?

38

Requirements for embedded systems are not equal desktop one.
Example:

No Item Requirement

Desktop Embedded

1 Widgets (GTK) to create a desktop-like UI ✔ -

2 Window manager: X11 ✔ -

3 Window manager: Wayland ✔ ✔(partially)

4 Multi window ✔ ✔(partially)

5 Graphics composition in app ✔ ✔

6 Keyboard input ✔ ✔(partially)

7 Touch input ✔(partially) ✔(partially)

8 Limited memory / storage capacity - ✔

9 Limited CPU power - ✔

Why is this embedder necessary instead of “Flutter desktop for Linux”?

39

For example, desktop apps require a widget like menubar (Need GTK)

https://github.com/google/flutter-desktop-embedding

https://github.com/google/flutter-desktop-embedding

Why is this embedder necessary instead of “Flutter desktop for Linux”?

40

Ø Flutter desktop for Linux uses X11 and GTK/GDK

Ø Source files strongly dependent on GDK
• We donʼt want to install libraries that are not used as functions as much as possible
• As a side note, we initially thought about sharing the source code with the desktop

version but concluded that it was difficult

Ø X11 and GTK require a lot of dependent libraries (includes GPL/LGPL
v3 licensed software)
• e.g. (on Ubuntu 18.04)

ü Xserver-xorg: https://packages.ubuntu.com/bionic/xserver-xorg
ü libgtk-3: https://packages.ubuntu.com/bionic/libgtk-3-0

https://packages.ubuntu.com/bionic/xserver-xorg
https://packages.ubuntu.com/bionic/libgtk-3-0

Framework
(Dart)

Engine
(C/C++)

Linux platform

Flutter user apps (Dart)

41

GTK

GDK

X11 Wayland

Common source files

Embedder for Linux desktop

OpenGL ES

Embedder for Linux desktop
(C++)

EGL

Flutter desktop for Linux

DRM

flutter/engine/tree/master/shell/platform/linux

https://github.com/flutter/engine/tree/master/shell/platform/linux

Flutter for Embedded Linux

Framework
(Dart)

Engine
(C/C++)

Embedder for Embedded Linux
(C++)

Flutter user apps (Dart)

42

Embedder for Embedded Linux

Wayland

OpenGL ES

EGL

Linux platform

Based Flutter desktop for Windows

Common source files

DRM

sony/flutter-embedded-linux

Wayland or directly to DRM

https://github.com/sony/flutter-embedded-linux

Flutter artifacts

Framework
(Dart)

Engine
(C/C++)

Embedder for Embedded Linux
(C++)

Flutter user apps (Dart)

43

Embedder for Embedded Linux

Wayland

OpenGL ES

EGL

Linux platform

libapp.so, which is built by Flutter SDK (dart-sdk)

DRM

sony/flutter-embedded-linux

libflutter_engine.so, which is built by GN/Ninja

Executable file (binary). Currently, we support to
self-build and cross-build using CMake

https://github.com/sony/flutter-embedded-linux

Build Flutter for embedded Linux using Yocto

44

$ git clone https://github.com/sony/flutter-embedded-linux.git

Add meta-flutter layer into your conf/bblayers.conf
$ bitbake-layers add-layer ../flutter-embedded-linux/meta-flutter

Build flutter-embedded-linux with Wayland backend
$ bitbake flutter-wayland-client

See: https://github.com/sony/flutter-embedded-linux/tree/master/meta-flutter

https://github.com/sony/flutter-embedded-linux.git
https://github.com/sony/flutter-embedded-linux/tree/master/meta-flutter

Build Flutter for embedded Linux using CMake

45

$ git clone https://github.com/sony/flutter-embedded-linux.git

$ mkdir build && cd build

Self-build on x64 or arm64
$ cmake -DUSER_PROJECT_PATH=examples/flutter-wayland-client ..
$ cmake --build .

Cross-build on x64 for arm64
$ cmake -DUSER_PROJECT_PATH= examples/flutter-wayland-client ¥

-DCMAKE_TOOLCHAIN_FILE=<toolchain-template-file> ..
$ cmake --build .

See: https://github.com/sony/flutter-embedded-linux/tree/master/doc

https://github.com/sony/flutter-embedded-linux.git
https://github.com/sony/flutter-embedded-linux/tree/master/doc

Future works

46

Ø Embedder tasks
• Platform Views (Texture composition in Flutter embedder) support
• Multi / Dual-screen support
• Vsync support
• Add compiler switch to disable input function (Keyboard, touch, mouse)
etc.

Ø Flutter plugins
• Audio / Video Player
• WebView
• Path provider
etc.

Ø Flutter SDK
• Add / contribute custom-devices support to build and debug using Flutter SDK

Thank you for your time

47

SONY is a registered trademark of Sony Group Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Group Corporation or its Group companies.

Other company names and product names are registered trademarks and/or trademarks of the respective companies.

