
Khasim Syed Mohammed, Linaro

Improving performance of key “External
Projects” in Android

 Objective

•What these external projects are ?

•Why we should be improving these ?

•How to approach

•What Linaro has done in this space so far ?

•What's on our road map ?

•Community participation request ..

abi build development frameworks Makefile
prebuilts art cts device hardware
ndk sdk bionic dalvik docs
libcore packages external bootable developers
system libnativehelper pdk tools

We are here

aosp@android: $ ls

 Android’s external folder

 Android’s external folder

•Android is, in many ways, just another Linux distribution

•As such, it includes code from many FOSS projects in the
“external” folder ...

•… and quite frequently, isn't in sync with what upstreams are
doing nor improved for performance.

 Current situation

Android imports an external FOSS project into its git repository

•(sometimes a released version, sometimes a git or svn snapshot)

•Patches to make it work with Android (and sometimes to add, remove or modify
some functionality) are added inside Android's git repository

•There is little or no effort made to upstream those changes, some changes are a
little bogus (checking in a config.h generated by autoconf to avoid the need to call
configure, ...)

•A newer upstream release may or may not be merged into Android – if at all, merges
typically happen months after the upstream release

•Android has no concept of updating an individual component (e.g. openssl) – often
leading to important upstream updates being ignored by device makers

 Analyzing external folder

Switching to another document that gives more details

 Overview of external folder in Linaro repositories

Team Projects Details
Google 11 Updated to latest versions, might be tracking and

maintaining for performance.
Linaro 11 Improving performance and upstreaming

Linaro 5 Might pick additional few projects

Not applicable 61 These projects are not applicable for performance,
falls under the category of fonts, no source
availability, to run on host machine, etc.

30 Related to testing, used in CTS, can be improved

57 No takers yet ..

175 Total components in external folder

Out of 175 components in the external folder,

Improving the performance - Approach

● Approach I
○ Many components can be improved for performance and

functionality by just migrating to latest versions
○ Identify and file AOSP bugs for such components.

● Approach II
○ Profile and benchmark the software component, identify

the bottleneck
○ Find possible improvement by using external hardware

accelerator, new libararies, compiler options, CPU v/s
GPU etc.

 AOSP v/s external projects

•Patches needed for Android go upstream ASAP (#ifdef-ed if
necessary)

•Upstream releases can be merged into Android quickly and
painlessly because all relevant patches are already there

•Upstream releases actually are merged in a timely manner

•Android adopts some sort of upstream packaging so e.g. an
OpenSSL security update can be pushed even to people who
are stuck with an ancient Android version

•They introduce improvements and add new features that
continually increase efficiency.

•Latest version ensures they have fixes for prior bugs.

•Obsoleted versions may inadvertently result in 'forgotten' and
eventually restraining with a version that is no longer supported.

•Unfortunately, accommodating a recent release may require
more effort, and delay.

 Importance of migration to latest versions

 Linaro is working on …

clang mesa3d

compiler-rt qemu

e2fsprogs sqlite

fdlibm webp

jpeg webrtc

libpng

flac libxml2

libogg libxslt

libvorbis tinyxml

gcc-demangle tinyxml2

sfntly

Approach – I :
Code modifications and upstream to AOSP or respective
project

Approach - II :
Bug Request to migrate to latest

 Few optimizations explained in detail

 BIONIC – Cortex C strings optimizations
Approach – II :
https://wiki.linaro.org/Platform/Android/CortexStringsInBionic

The following functions from cortex-strings still perform better than AOSP master
and should be merged:
•strlen
•memchr
•memcpy

The following functions from AOSP master perform better than cortex-strings
and should be merged the other way so glibc can benefit:
•memset

There is no relevant difference in performance between both implementations of:
•strcpy
•cortex-strings currently doesn't implement strchr

https://wiki.linaro.org/Platform/Android/CortexStringsInBionic
https://wiki.linaro.org/Platform/Android/CortexStringsInBionic

 OpenSSL - Optimizations
Approach – I (just migrating to latest version improves a lot)

Wiki – TBD.

● Open SSL on AOSP is 1.0.1f and there is NEON
optimizations available in 1.0.2 beta

● Google might be migrating only after a stable release is
publicly available.

● Linaro provides the patch that can get 1.0.2 beta working
on AOSP master.

 SQLite - Optimizations
Approach – I and II
https://wiki.linaro.org/Platform/Android/SQLiteOptimization

● Migrating to latest:
○ Android KitKat (4.4) ships with SQLite 3.7.11. An experiment was carried

out to move to a newer version (3.8.3.1) and the newer SQLite package
showed a 7% improvement over the older version when running the RL
Benchmark SQLite Android app.

● Using optimized Cortex C strings :
○ Since all SQL statements are in plain text format, there is inherently a lot of

string operations. Thus, one way to improve the performance of SQLite is
to optimize the Bionic C string library. Showed an improvement of 15 %

● Switching to F2FS

https://wiki.linaro.org/Platform/Android/SQLiteOptimization
https://wiki.linaro.org/Platform/Android/SQLiteOptimization

 Immediately on our roadmap

● The Guava project contains several of Google's core
libraries that we rely on in our Java-based projects:
collections, caching, primitives support, concurrency
libraries, common annotations, string processing, I/O,
Guava and so forth.

● Zib : Some thing like,https://github.com/0xlab/0xdroid-
external_zlib/blob/4f9dfb6ca8dba01798b49c7e82cfe1ec
da3415f2/arm/adler32.c

● fdlibm

https://github.com/0xlab/0xdroid-external_zlib/blob/4f9dfb6ca8dba01798b49c7e82cfe1ecda3415f2/arm/adler32.c
https://github.com/0xlab/0xdroid-external_zlib/blob/4f9dfb6ca8dba01798b49c7e82cfe1ecda3415f2/arm/adler32.c
https://github.com/0xlab/0xdroid-external_zlib/blob/4f9dfb6ca8dba01798b49c7e82cfe1ecda3415f2/arm/adler32.c
https://github.com/0xlab/0xdroid-external_zlib/blob/4f9dfb6ca8dba01798b49c7e82cfe1ecda3415f2/arm/adler32.c

 Open for discussion ..
ant-glob dnsmasq jsr305 nist-sip v8

antlr ganymed-ssh2 libcap-ng oauth valgrind

apache-
harmony

grub libpcap okhttp webkit

apache-http harfbuzz libphonenumbe
r

opencv wpa_supplicant

apache-xml harfbuzz_ng libselinux openssh openssl

arduino icu4c libvpx ppp tinyalsa

bluetooth iproute2 libyuv protobuf xmp_toolkit

chromium ipsec-tools marisa-trie regex-re2 mp4parser

dbus iptables mdnsresponde
r

smali jhead

srtp jmonkeyengine mksh tcpdump dhcpcd

At least they can be migrated to latest versions for improvements

 Open for discussion – Not confident
Fonts Host Updated No new

releases
Other

cibu-fonts astl bison aac android-clat liblzf dropbear quake

lohit-fonts busybox eclipse-
basebuilder

bouncycastle android_inpu
t_bridge

libppp elfutils replicai
sland

naver-
fonts

eyes-free eclipse-
windowbuilder

checkpolicy bsdiff libsepol hyphenatio
n

safe-
iop

noto-fonts ffmpeg fat32lib eigen bzip2 lzma javasqlite skia

sil-fonts htop genext2fs giflib dexmaker netcat libffi stlport

jack yaffs2 iputils doclava open-
vcdiff

libmtp zxing

ncurses lrzsz expat speex libnfc-nci

sonivox openfst fsck_msdos tagsoup libnl

srec tremolo jline tinycomp
ress

libusb

svox pixman jmdns zlib libusb-
compat

x264 freetype libgsm markdown

Unit testing Benchmark

android-mock hamcrest embunit blktrace stressapptest

easymock proguard gtest iozone stringbench

littlemock javassist junit memtester xmlwriter

mockwebserver jdiff netperf linux-tools-perf

roboelectric jsilver strace nist-pkits

objenesis lava-
blackbox

emma google-diff-
match-
patch

● Do we have any better alternative in other Linux distributions that we
could use ?

● Do they need to be updated for new parameters or test coverage

Open for discussion – Any better method ?

● The Android “external” components can be optimized and
improved.

● Linaro has been continuously tracking, analyzing important
components.
○ Will be improving by necessary code modifications and

submitting changes to AOSP.
○ Will file bugs to AOSP to migrate to latest versions where

applicable.
● Request community participation in improving external

components.
● Any suggestions and improvement areas can be discussed in

any public forum.

 Conclusion

More about Linaro: www.linaro.org

Register to participate or to get latest updates

linaro-android@lists.linaro.org

 Let's work together

