

Examining Linux Kernel Size

Apr 12th, 2006 IKEDA, Munehiro

Contents

- 1. Background
- 2. Project scope
- 3. Examination tool
- 4. Current examination result
- 5. Issue
- 6. Future works
- 7. Getting involved!

1. Background

Facts

- -Embedded engineers need small kernel.
- To make small kernel,
 you need to configure your kernel very carefully.
- Num of config items > 3000

Issues

- -Kernel size and memory usage impacts of config items are unknown.
- -Trial-and-error approach is impractical.
- Trend of kernel footprint along versions is unknown.

2. Project scope (1)

Objective

 Making clear impact of config items for kernel size and memory usage.

Output

- -Size impact of config items
 - Derived from kernel file size measurement
- -Memory usage impact of config items
 - Derived from memory usage measurement just after boot

2. Project scope (2)

Approach

- -Automatic measurement
 - Generate .config files from selected config item list.
 - Make kernels and measure file size of kernel image.
 - Install, reboot, and measure memory usage just after booting.

Impact calculation

- Calculate impacts for each config item from measured result.
- "Impact" means ISOLATED IMPACT shown as below.

2. Project scope (3)

Goal

- -Publishing / providing data
 - Covering many versions.
 - Covering many architectures.

Benefits

- -For embedded engineers
 - You can estimate size and memory usage before building kernel.
 - If all isolated impacts are known, kernel size can be predicted by summing—up size of each config item.
- For kernel developers
 - Version comparison helps to point out which part of kernel is bloating and to be improved.

2. Project scope (4)

Expected deliverable

It shows this part is bloating

2. Project scope (5)

I have a dream ...

2. Project scope (6)

3. Examination tool (1)

Tool overview

3. Examination tool (2)

How .config files are made

 config generator generates .config files from target config item list.

3. Examination tool (3)

What you need to set-up for your examination

- Remote-type environment
 - Connect host and target via Ethernet and serial line.
 - Target downloads kernel via Ethernet.
 - Host communicates with target via serial console.
 - Connect host and reset device which can reset the target.
 - Host can force target to reset by reset device.
 - Communicating and reset method can be configurable so that our tool is flexible about environment.

Self-type environment is also available

4. Current examination result (1)

Conditions

- -Base-config-set for "base kernel"
 - Minimal configuration to boot.
 - UP kernel
 - ext3, sysfs, procfs
- -Target config items: About 200
 - Select popular items for embedded.
 - Except for items which have global effect.
 (ex : smp, pm, printk support etc.)
- -Target versions: 2.6.0, 2.6.4, 2.6.8, 2.6.10, 2.6.12.6, 2.6.15.6
- -Target architectures: i386, ARM

Empowered by Innovation

4. Current examination result (2)

Result about size: Base Kernel

- Size increase is about 10% from 2.6.0 to 2.6.15.

vmlinux : 150[KB]

• bzImage: 50[KB]

Note(1): gcc 3.3.5, binutils 2.15

4. Current examination result (3)

- Result about size: Isolated impact of each config item
 - Top 5 items
 - Network features have larger impact.

Note(1): gcc 3.3.5, binutils 2.15

Note(2): Some config items are not completely isolated.

NFS_FS += LOCKD + SUNRPC

IPV6 += CRYPTO + CRYPTO MD5

4. Current examination result (4)

- Result about size: Trend of impacts
 - Bloating trend of NFS and DVB_BUDGET are found.

Note: gcc 3.3.5, binutils 2.15

4. Current examination result (5)

Result about memory usage: Base Kernel

- Memory usage increased by about 7% from 2.6.0 to 2.6.15.
- Peak at 2.6.8 is observed. (needs analysis)

Note(1): gcc 3.3.5, binutils 2.15

Note(2): Target machine ... Pentium IV 2.2GHz/RAM 256MB/HD 40GB

4. Current examination result (6)

- Result about memory usage : Isolated impact of each config item
 - Top 5 items
 - SWAP, JFFS2, and network features have large impact for memory usage.

Note(1) : gcc 3.3.5, binutils 2.15

Note(2): Target machine ... Pentium IV 2.2GHz/RAM 256MB/HD 40GB

4. Current examination result (7)

Result about memory usage: Trend of impacts

- Memory impact of most of items increased from 2.6.10/2.6.12 to 2.6.15.
- There are some impacts less than 0.
 More precision measurement is needed.
 - Current measurement method is using sysinfo(2).

Measurement is currently done by rc-script.

Note(1): gcc 3.3.5, binutils 2.15

Note(2) : Target machine ... Pentium IV 2.2GHz/RAM 256MB/HD 40GB

4. Current examination result (8)

Result summary about Size

- Base kernel size has increased by about 10% within 2.6 series.
- Network features have the largest impact for size.
- NFS's bloating trend has been shown along recent versions.

Result summary about Memory usage

- Memory usage of base kernel fluctuates about 1MB within 2.6 series. Increase is about 7%.
- Swap and JFFS2 have the largest impact for memory usage.

5. Issue

Semantic change of config item breaks version comparison.

- ex1 : Dependency change : DVB_BUDGET
2.6.9 : select VIDEO_SAA7146
2.6.10 : select DVB_STV0299
select DVB_VES1X93
select DVB_VES1820
select DVB_L64781
select DVB_TDA8083
select DVB_TDA10021

- ex2 : Name change : JFFS2_FS_NAND -> JFFS2_FS_WRITEBUFFER 2.6.12 : jffs2-\$(CONFIG_JFFS2_FS_NAND) += wbuf.o 2.6.13 : jffs2-\$(CONFIG_JFFS_FS_WRITEBUFFER)+= wbuf.o

- This is fundamental issue for our approach based on config items.
- Human check is needed for cases like this.

6. Future works (1)

Improvement of our tool

- Currently we have to list item(s) other than target to calculate isolated impact of the target.
- We have a plan to improve .config generator to generate .config file(s) which are enough to calculate isolated impact of the target item automatically.

Empowered by Innovation

6. Future works (2)

Investigation for better memory measurement approach

- Approach other than sysinfo(2).
- Approach which can measure memory usage before rcscript to prevent measurement error caused by process environment.

Examining more architectures

- Examining popular architectures for embedded use.
 (mips, ppc, sh etc.)
- Utilization of CELF Test Lab.

7. Getting involved!

- Please get involved in this project!
- Any suggestions are welcome!
 - Configuration set for base-kernel
 - -Configuration profile to decide target items
 - -How to provide the result
 - -etc...

CELF Public WiKi

http://tree.celinuxforum.org/CelfPubWiki/KernelConfigWeight

celinux-dev ML

celinux-dev@tree.celinuxforum.org

Thank you!

Appendix: reference data

Kernel size possibility

Sort of Kernels

- vanilla-allyes almost "make allyesconfig" disable debug-info and size optimization
- vanilla-default : almost "make deconfig"
- vanilla-small :Enabling least drivers, fs to boot.

Measurement conditions

- Kernel 2.6.10
- i386
- gcc 3.3.5

