
Abstract
* Cell broadband engine is a heterogeneous multi-core processor

which consists of a Power PC element, (PPE) and Synergistic
Processor Elements (SPEs). SPEs can be used to achieve better
performance. This paper proposes utilizing SPEs from user space to
accelerate kernel services. Our solution allows kernel services to
access to SPEs easily. We'll show evaluation of the concept, using
modified compressed loop device driver, CLOOP, to utilize SPE.
We'll also discuss possible other kernel services to be accelerated
by SPEs.

* Machida - Sony
* Shinohara - Sony
* Tsukamoto - SCE
* Suzaki - AIST

Cell broadband engine, SPE
assisted user space device driver

2007.04.19

Hiroyuki Machida

What’s our intention and
backgrounds?

Motivation
* Accelerate performance of commonly

used functions, e.g. kernel services and
device drivers, by utilizing SPEs in Cell BE.

Cell employs following strategies
- “simpler structure and higher clock”
- “more room for SPEs on silicon”

Cell consist multiple cores
-One Hyper threaded PPE
-Eight SPE

Using only PPE does not achieve
same performance with same clock on
G5(PPC970)

PPE Logic is only
1/10 of die size

What Is Cell BE?
* 1 PPE + 8 SPE connected with EIB

- PPE - Power Processor Element
* PPC64+VMX insns/SMT/in-order/deep pipeline

- SPE - Synergetic Processor Element
* general purpose SIMD with Local Storage (LS), not cache

- EIB - Element Interconnect Bus
* Hi-speed coherent SMP Bus

Again, What Is Cell BE?

* Do not hesitate to try programming Cell.
- “Most good solutions for the Cell will be good solutions

on other platforms.”
- As same as modern computer programming, “DATA IS

MORE IMPORTANT THAN CODE.”.

* Difference is just…
- “Where data and code optimization are merely

important on conventional architectures, it's critical on
the Cell.”

* The Cell is not a magic bullet.
* The Cell is not a radical change in high-performance design.
* The Cell is fun to program for.

From “Tapping the Power of Cell”, by Mike Acton

Again, Motivation
* Even leading Cell BE Linux Project, I was

not so much familiar with Cell Programming.
* Frequently, I had to ask others about Cell

BE Program Logic.

* OK, It’s just time to try by myself.

* Actually, I’m personally VERY interested in
Cell Programming now. ☺

Starting Investigation
Offload Kernel to SPE

Requirements
* Preserve existing Kernel-User APIs

* Changes should be minimized

* Utilize existing functions as much as
possible

* Improve performance
- Less CPU(PPE) usage
- Faster in execution

Constraints
* SPE itself doesn’t have privilege mode on

execution.
- CPU core of SPE doesn’t have “privilege”

concept.
- However, MFC has capability to switch kernel

mode and user mode address space of PPE
side main memory。

* Current Kernel doesn’t support executing
heterogeneous CPU core instructions.

Possible Two Solutions
Offloading kernel functions on which

address space

* Kernel Mode
- Adding new infrastructures in kernel to

support SPE acceleration in kernel mode.

* User Mode
- Adding helper feature inside kernel to allow

off loading function in user space for SPE.

Pros v.s. Cons
* Kernel Mode

- Pros
* Less overhead

- Cons
* It’s difficult to debug with this model

- kgdb do not speak SPEs
* New code required for controlling SPE in kernel

* User Mode
- Pros

* No new code required for controlling SPE in kernel
* This allows programmers to use existing tools for debugging

- Cons
* Overhead switching between kernel and user space
* Require protecting user space SPE data/prog from other

regular user space application

Feasibility Study with User mode
* Try out a simple example using CLOOP,

software device driver.

* Why CLOOP ?
- It’s small
- It has locality in memory reference (block

decompression)

It won't be a security hole
* MFC access to the main memory (XDR) is bound inside

corresponding user process, since MFC is tied to MMU
on PPE.
- SPE can’t reach XDR directly, just to Local Storage (LS) .
- Data transfer between LS and XDR is taken place by MFC.

* PPE access to SPE registers and LS are virtualized in
each user process unit.
- PPE can map LS and SPE registers, however SPE registers

have privillage and those mappings are under controlled by
kernel.

- Kernel prevents to map LS and SPE registers from other user
process.

- If it could, it’s a bug of kernel.

* As a conclusion, SPE running kernel functions are well
isolated from the other user processes.

Prototyping –
So, Is it possible to implement?

How does it work?

Terminologies
* CLOOP Compressed Loop block device
* UIO Userspace I/O kernel drivers
* CLD CLOOP Driver
* ULD User Level Device Driver

Overview of our Prototype

read()

ULDCLD

Retrun-value

Pass Parameters

SPE

ULD DaemonUser
Prg.

W
ait

W
ait

Kernel Space User SpaceUser Space

mmap()

munmap()

read()

Basic Design
* User space SPE offloading daemon waits a request from

kernel.

* Driver locks pages, wake up the daemon and pass the
pages to the daemon.

* The passed page includes file name of SPE codes,
parameters and input data/out put data.

* The daemon start SPE and has been blocked until SPE
execution, according the parameters passed from kernel.
- SPE would transfer data to/from the locked pages.

* After SPE execution finished, daemon will inform it to
kernel.

Data flows in ULD daemon

RD WR

SPE
Program

Local Storage

Kernel Space
User Space (daemon)

Param. Area

Buffer in Kernel Buffer in Kernel

Daemon
Program

(PPE side)

*** Parameter Area ***

- # of RO Pages
- # of WR Pages
- # of WO Pages
- SPE program file name
- System params
* # of SPU
* PG SZ
* ….

- sched params
- Params to be passed SPE

load

ULD helper

nopage() refer those
mapping table

mmap() and ULD helper

RO WO

SPE
Program

Local Storage

Kernel Space
User Space (daemon)

Param. Area

Daemon Program
(PPE side)

*** Parameter Area ***
-# of RO Pages
-…

load

Mapping table for RO area

B
uf

fe
r i

n
K

er
ne

l

B
uf

fe
r i

n
K

er
ne

l

Mapping table for RW area

CLOOP

Typical SPE program flow
* PPE Program side

- spe_create_context()
* Create SPE context

- spe_image_open()
* Open elf file of SPE program

- spe_program_load()
* [1] Load SPE program to LS

- spe_context_run()
* [2] Let SPE start the program

* SPE Program side.
- [3] Transfer data to be process into LS from

PPE side main memory, though by MFC.
- [4] Processi data in LS
- [5] Transfer processed data from LS to PPE

side main memory though MFC.
- [6] Signal PPE program that SPE program has

sopped.

ULD Daemon code fragments
* User space daemon, which actually do decompress.

* spe_create_context()
* spe_program_load();
* pthread_create();

- spe_context_run()

* fd = open(); // ULD helper device
* while (1)

- read(fd, &in, sizeof(int)); // wait a request
- vaddr = mmap(fd, …); // map Req Params and buffer
- // making page faults to mmap()ed area
- // setup parameters on mapped area.
- spe_in_mbox_write(); // start SPE
- spe_out_mbox_read(); // wait answer from SPE
- munmap() // notify termination to ULD helper

CLD side code fragments
* Modify compressed_loop.c

- Replace calling decompress() with
* // acquire a request packet
* // fill parameters and setup mapping tables
* // send the request to ULD helper device
* // wait for completion
* // got a return value
* // free mapping tables
* // free the request packet

ULD helper, based on UIO
* What’s UIO (Userspace IO devices) ?

- See - http://www.kroah.com/log/linux/uio.html
* drivers/uio/uio.c
* include/linux/uio_driver.h
* Documents/DocBook/uio-howto.tmpl

* Kernel side helper driver, uio_spe.ko, has been
easily implemented, using UIO.
- uio_spe.ko is inheriting uio.ko

* Start with “gregkh-01-driver-2.6.21-rc1-git2.patch”
* Added just few methods and attributes.
* debug UIO….

http://www.kroah.com/log/linux/uio.html

DeCompression
* Evaluation with miniLZO

- Alternative of GnuUnZip - Decompress() in CLOOP
- http://www.oberhumer.com/opensource/lzo/

* Why miniLZO?
- Small foot print
- Algorithm Looks Simpler

* My changes to the original miniLZO.202
- Change buffer size to 64KB, so that LS can hold

entirely.
- Some introduction of SIMD-lize.

* Byte copy -> inline SIMD memcpy/memove
* Find non-zero byte. -> inline modified strlen

http://www.oberhumer.com/opensource/lzo/

Very Quick Evaluation

Evaluation Environment – PS3
* Kernel - 2.6.21-rc6 PS3 git tree

- git://git.kernel.org/pub/scm/linux/kernel/git/geoff/ps3-linux.git
* PPC64 FC5

- gcc-4.1.1-1.fc5
* PS3 Linux Distributor Starter’s Kit v1.1

- libspe2-2.0.1-be0647.3.20061130.1.ps3pf
- spu-newlib-1.14.0.200612070000-1.ps3pf

* gcc/binutils from IBM Cell SDK 2.0
- ppu/spu-gcc-3.3-72
- ppu/spu-binutils-3.3-72

* SPE GCC Flags for Optimization
- -O3 -mbranch-hints -funroll-all-loops

-fomit-frame-pointer -ftree-vectorize
-finline-functions -ftree-vect-loop-version
–ftree-loop-optimize
-fdata-sections -ffunction-sections -Wl,-gc-
sections

* PPE GCC Flags for Optimization
- -O3

Simple test case
* Insert modules

- insmod uio.ko
- insmod spe_uio.ko
- insmod cloop.ko file=cd-image.iso.mini-lzo

* Repeat 10 times
- dd if=/dev/cloop0 of=/dev/null bs=1M
- mount –t iso9660 /dev/cloop0 /mnt/a
- diff –upr /mnt/a original image
- unmount /mnt/a

* Remove modules
- rmmod cloop.ko
- rmmod spe_uio.ko
- rmood uio.ko

Data for the Evaluation
* ISO image contains

- RAW
*28.35MB

- miniLZO-ed
*17.03MB 60%
*(GZIP-9 13.04MB)

*Data size is arranged so
that all data can reside
in main memory.

- Don’t want to measure
HDD I/O speed.

*miniLZO 64KB block

$ ls -Rl cd-image
cd-image:
total 12
drwxrwxr-x 2 machida machida 4096 Apr 11 07:54 boot
drwxr-xr-x 2 root root 4096 Apr 14 05:03 sbin
drwxr-xr-x 3 root root 4096 Apr 14 04:59 usr

cd-image/boot:
total 28456
-r--r--r-- 1 machida machida 1110582 Dec 21 19:39 initrd.img
-rwxr-xr-x 1 machida machida 27985528 Dec 7 18:19 vmlinux-2.6.16

cd-image/sbin:
total 44
-rwxr-xr-x 1 root root 42468 Feb 24 2006 syslogd

cd-image/usr:
total 4
drwxr-xr-x 3 root root 4096 Apr 14 04:59 share
cd-image/usr/share:
total 4
drwxr-xr-x 3 root root 4096 Apr 14 04:59 doc

cd-image/usr/share/doc:
total 4
drwxr-xr-x 2 root root 4096 Dec 21 18:16 zsh-4.2.5

cd-image/usr/share/doc/zsh-4.2.5:
total 232
-rw-r--r-- 1 root root 1986 Mar 10 2002 BUGS
-rw-r--r-- 1 root root 21687 Jul 23 2003 completion-style-guide
-rw-r--r-- 1 root root 11839 Feb 27 2004 CONTRIBUTORS
-rw-r--r-- 1 root root 82695 Apr 6 2005 FAQ
-rw-r--r-- 1 root root 5005 Jul 3 2004 FEATURES
-rw-r--r-- 1 root root 1477 Mar 14 2004 LICENCE
-rw-r--r-- 1 root root 9560 Jul 3 2004 MACHINES
-rw-r--r-- 1 root root 28518 Jan 12 2005 NEWS
-rw-r--r-- 1 root root 8768 Apr 6 2005 README
-rw-r--r-- 1 root root 30453 Jan 8 2004 zsh-development-guide
-rw-rw-r-- 1 root root 6330 Sep 10 2004 zshprompt.pl
$

Where are measured and Results
CLOOP (minilzo)

635.8usec

decompression

CLOOP ULD daemon
PPE SPE

888.2usec

535.2usec

Overhead
Kern Ù User

Overhead
Daemon Setup

Overhead
SPE Setup

Overhead
Daemon Ù SPE

decompression

192.3use

7.6use

535.2use

152.1usec

1.0usec635.8use

WITHOUT OFFLOADING
WITH OFFLOADING

64K
B

 B
LO

C
K

:-<

“Game Over”

No, We still have chance, …
* Just one SPE used, we have 5

more..

* miniLZO is not still well optimized
to SPE SIMD instructions.

* On demand PTE installation
using page fault and nopage(),
would be painful.
- Install PTEs on mmap()

* Cost of Context Switch would be
painful.
- Due to Large memory address

space ? - 64 KB page??
- Bigger Block Size ?

CLOOP ULD daemon
PPE SPE

888.2usec

535.2usec

Overhead
Kern Ù User

Overhead
Daemon Setup

Overhead
SPE Setup

Overhead
Daemon Ù SPE

decompression

192.3use

7.6use

535.2use

152.1usec

1.0usec

Quick Estimations
* 512KB block (64KB x 8) decompress

- Non- Offloading - 5086.08 usec
* 635.76 usec x 8 = 5086.08 usec

- Offloading with 4 SPEs
* Best case - 1423.3 usec (x 3.6 faster)

* Worst case – 3834.03 usec(x 1.3 faster)

CLOOP ULD daemon
PPE SPE

888.2usec

535.2usec

Overhead
Kern Ù User

Overhead
Daemon Setup

Overhead
SPE Setup

Overhead
Daemon Ù SPE

decompression

192.3use

7.6use

535.2use

152.1usec

1.0usec

Overhead
Kern Ù User

Overhead
Daemon Setup

Overhead
SPE Setup

Overhead
Daemon Ù SPE

decompression

x8

x1

x2

x8

x1

Overhead
Kern Ù User

Overhead
Daemon Setup

Overhead
SPE Setup

Overhead
Daemon Ù SPE

decompression

x1

x1

x2

x1

x1

64K
B

 B
LO

C
K

Next Steps
* Feedback to UIO driver
* Clean up codes
* Make it fast

- Install PTEs on mmap()
- Try 64KB PAGE SIZE
- Try 4 SPEs and 512KB block

* Make it general
- Make ULD and ULD helper to be generalized

* New possible issues
- SPE scheduling

* Gang scheduling might be helpful
* Other Candidate of User Space SPE Device Drivers

- Discuss applications on other device drivers and additional
requirements on helper functions.

- Crypto API -> OCF looks very good candidate？
- VFB/color space converter
- USB web cam ?? It could be user space driver even now.

* Decompression/ Color space converter

Questions ?

Comparison to PC
* These results are very preliminary, not

accurate.

* DD with miniLZO version of CLOOP

- dd if=/dev/cloop0 of=/dev/null bs=1M

- Core Duo 1.3GHz 90-100MB/sec(wo statistics code)
* -O3 –msse3 –funroll-loops

- PPE Cell 3.2GHz 70-90MB/sec(w statistic code)

	Abstract
	Cell broadband engine, SPE assisted user space device driver
	What’s our intention and backgrounds?
	Motivation
	What Is Cell BE?
	Again, What Is Cell BE?
	Again, Motivation
	Starting Investigation�Offload Kernel to SPE
	Requirements
	Constraints
	Possible Two Solutions
	Pros v.s. Cons
	Feasibility Study with User mode
	It won't be a security hole
	Prototyping –�So, Is it possible to implement?�How does it work?
	Terminologies
	Overview of our Prototype
	Basic Design
	Data flows in ULD daemon
	mmap() and ULD helper
	Typical SPE program flow
	ULD Daemon code fragments
	CLD side code fragments
	ULD helper, based on UIO
	DeCompression
	Very Quick Evaluation
	Evaluation Environment – PS3
	Simple test case
	Data for the Evaluation
	Where are measured and Results
	:-<
	No, We still have chance, …
	Quick Estimations
	Next Steps
	Questions ?
	Comparison to PC

