
CELF Technology Jamboree #4

An experiment about the thread An experiment about the thread
responseresponse timetime

-- Interim Report Interim Report --
Katsuya Matsubara

Igel Co., Ltd
Renesas Solutions

2005/9/30

2005/9/30 2CELF Technology Jamboree #4

BackgroundBackground

We want to develop device drivers in the User level
– Easy development
– Decrease the risk of system down coursed by driver bug.
– （GPLの回避）…may be it will be better to remain it in Japanese ☺

Problems
– Access to I/O Memory, physical devices.
– Transfer the interrupt request (IRQ)
– Reaction speed to the Interrupt request
– ‥‥

New features in Kernel 2.6
– NPTL(Native POSIX Thread Library)
– Improvement of the scheduler（like O(1) scheduler）
– Kernel Pre-emption
– ‥‥

2005/9/30 3CELF Technology Jamboree #4

Objectives of the ExperimentObjectives of the Experiment

Measure the thread response speed
– Especially for the waking up time

Check whether we can utilize the RT thread

2005/9/30 4CELF Technology Jamboree #4

EnvironmentEnvironment

Renesas RTS7751R2D (big-endian) solution engine
– SH4(SH7751) 240MHz
– 64MB SDRAM
– 10base-T Ethernet

Linux 2.6.8.1
Glibc 2.3.4
Rootfs is on the NFS Server

2005/9/30 5CELF Technology Jamboree #4

Programs for the ExperimentPrograms for the Experiment

Virtual device driver
– Make virtual device file （/dev/irqhook）
– When any process “write” to the device file, wake up a thread

which is blocking as “read” to the device file
WRITE task
– Issue a trigger to wake up “read” thread by issuing “write” to the

virtual device file
READ task
– Issue “read()” to the virtual device file and block it.

Load task
– The “rival task” which is also to be the target of the scheduling as

same as above tasks.

2005/9/30 6CELF Technology Jamboree #4

Programs for the Experiment Programs for the Experiment
(contd.)(contd.)

Virtual device driver

READ
task

WRITE
task Load Tasks

Linux Kernel

(1) read() (2) write()(3) Wake up

2005/9/30 7CELF Technology Jamboree #4

READ taskREAD task

void read_task () {
….

/* Open virtual device */
fd = open(“/dev/irqhook”, O_RDONLY);

for(i=0; i<10000; i++) {
/* issue read() to block */
read(fd, &tv1[i], sizeof(struct timeval));
/* record time */
gettimeofday(&tv_e[i], NULL);

}
}

2005/9/30 8CELF Technology Jamboree #4

WRITE taskWRITE task

void write_task () {
….

/* Open virtual device file */
fd = open(“/dev/irqhook”, O_RDWR);

ts.tv_sec = 0;
ts.tv_nsec = 16 * 1000 * 1000; /* 16ms */

for(i=0; i<10000; i++) {
/* record time */
gettimeofday(&tv_s[i], NULL);
/* issue write() */
write(fd, &ch, sizeof(char));
/* Sleep 16ms */
nanosleep(&ts, NULL);

}
}

2005/9/30 9CELF Technology Jamboree #4

Virtual Device DriverVirtual Device Driver

ssize_t irqhook_write(….) {

….

do_gettimeofday(&tm);

atomic_inc(&count);
/* Wake up the task in the
waiting queue */

wake_up(&q);

….

}

ssize_t irqhook_read(….) {

….

pending = atomic_read(&count);

while (pending == 0) {

prepare_to_wait(&q, &wait,

TASK_INTERRUPTIBLE);

pending =

atomic_read(&count);

/* Sleep until write() */

if (pending == 0)

schedule();

finish_wait(&q, &wait);

….

}

copy_to_user(bufp, &tm,

sizeof(struct timeval));

….

}

2005/9/30 10CELF Technology Jamboree #4

Load taskLoad task

void busyloop() {

….

ts.tv_sec = 0;

ts.tv_nsec = 1 * 1000; /* 1us */

while (1) {

nanosleep(&ts, NULL); /* Wake up in each 1 micro sec
*/

}

}

2005/9/30 11CELF Technology Jamboree #4

Conditions of the ExperimentConditions of the Experiment

Repeat 10,000 times the READ task and WRITE task, to the virtual
device file (issue read() and write()).
Write Task: issue “write()” in each 16 ms.
Read Task: issue “read()” just after previous “read()” completed
Measure the time, from issuing the write() in the Write task, to the Read
task returns from read(). At the same time measure the time, from
“write()” is accepted by the virtual device driver, to the READ task starts.
During the measurement, the Load tasks which repeats “nanosleep()”
of 1 micro second will be evoked. Measure the case of the number of
the Load task, 0,1,2,4,8,16,32.
Measure two cases on the Read task and the Write task:

– Execution upon the ordinary (normal?) thread (Non-RT thread).
– Execution upon the RT thread (Priority 1, Round Robin Scheduling

(SCHED_RR))
Load task(s) is (are) executed on the Non-RT thread

2005/9/30 12CELF Technology Jamboree #4

ResultResult
Thread switch over timeThread switch over time

Switch over time (Write Task -> Virtual Device Driver -> Read Task)

Task execution time is
constant even if the number
of the load tasks increased
In case of the non-RT thread,
it increases according to the
number of the load tasks

切り替え時間（WRITEタスク→仮想DD→READタスク）

0

20

40

60

80

100

120

140

160

180

0 1 2 4 8 16 32

負荷タスク数

応
答
時
間
（
マ
イ
ク
ロ
秒
）

non-rt thread

rt thread

R
es

po
ns

e
Ti

m
e

(m
ic

ro
 se

co
nd

)

Numbers of the Load Tasks

2005/9/30 13CELF Technology Jamboree #4

ResultResult
Thread waking up timeThread waking up time

RT Thread execution time is
constant even if the number
of the load tasks increased
In case of the non-RT thread,
thread switching overhead
increases according to the
wake up time

起床時間（仮想DD→READタスク）

0

20

40

60

80

100

120

140

160

180

0 1 2 4 8 16 32

負荷タスク数

応
答
時
間
（
マ
イ
ク
ロ
秒
）

non-RTスレッド

RTスレッド

R
es

po
ns

e
Ti

m
e

(m
ic

ro
 se

co
nd

)

Numbers of the Load Tasks

Wake up time (Virtual D.D. -> Read Task)

Non-RT Thread

RT Thread

2005/9/30 14CELF Technology Jamboree #4

ConsiderationsConsiderations

RT thread provided constant reaction time. It is
because RT thread becomes the target of
dispatching immediately whenever it is requested
nevertheless the condition of the Non-RT threads
such as the Load Task.
The behavior of Non-RT thread is affected by the
other tasks.

RT thread is ideal for developing the user level
device drivers,

However how about Non-RT thread???

2005/9/30 15CELF Technology Jamboree #4

Behavior of NonBehavior of Non--RT threadRT thread

An interesting (strange) behavior observed in the
result of the measurement of Non-RT thread.

2005/9/30 16CELF Technology Jamboree #4

ResultResult
Separated NonSeparated Non--RT thread switching time into Fast and SlowRT thread switching time into Fast and Slow

Non-RT thread response
time (fast case) and that of
RT thread is almost same.
Non-RT thread response
time (slow case) increase in
accordance with the number
of the Load Tasks.

切り替え時間（WRITEタスク→仮想DD→READタスク）

0

50

100

150

200

250

300

350

0 1 2 4 8 16 32

負荷タスク数

応
答
時
間
（
マ
イ
ク
ロ
秒
）

Non-RTスレッド
(早)

Non-RTスレッド
(遅)

RTスレッド

Non-RT Thread (Fast)

Non-RT Thread (Slow)

RT Thread

Switch over time (Write Task -> Virtual Device Driver -> Read Task)

R
es

po
ns

e
Ti

m
e

(m
ic

ro
 se

co
nd

)

Numbers of the Load Tasks

2005/9/30 17CELF Technology Jamboree #4

ResultResult
Separated NonSeparated Non--RT thread wake up time into Fast and SlowRT thread wake up time into Fast and Slow

起床時間（仮想DD→READタスク）

0

50

100

150

200

250

300

350

0 1 2 4 8 16 32

負荷タスク数

応
答
時
間
（
マ
イ
ク
ロ
秒
）

Non-RTスレッド
(早)

Non-RTスレッド
(遅)

RTスレッド

Non-RT Thread (Fast)

Non-RT Thread (Slow)

RT Thread

R
es

po
ns

e
Ti

m
e

(m
ic

ro
 se

co
nd

)

Numbers of the Load Tasks

Wake up time (Virtual D.D. -> Read Task)

Same result as that of
switching time

2005/9/30 18CELF Technology Jamboree #4

MeasurementMeasurement
Case: NonCase: Non--RT Thread (Load tasks 16)RT Thread (Load tasks 16)

ループ回数 切り替え時間 応答時間

0 94 185
1 17 23

5 16 22
6 17 22
7 155 160

8 17 22

9 154 159

10 17 22

11 154 160

2 18 23
3 17 21
4 17 22

‥ ‥ ‥

Number of Loops Switching Time Response time

2005/9/30 19CELF Technology Jamboree #4

MeasurementMeasurement
Case: RT Thread (Load tasks 16)Case: RT Thread (Load tasks 16)

ループ回数 切り替え時間 応答時間

0 91 163
1 17 23

5 16 21
6 16 20
7 16 21
8 16 20
9 16 21

10 16 20
11 16 21

2 16 21
3 16 21
4 17 21

‥ ‥ ‥

Number of Loops Switching Time Response time

2005/9/30 20CELF Technology Jamboree #4

QUESTION???QUESTION???

The response time of the Non-RT thread is stable in
the initial few loops.
However, after then, why the response time repeat
“Fast” and “Slow” alternately?
Why the first response time is so slow in both case
that RT exists and not exists.

2005/9/30 21CELF Technology Jamboree #4

DiscussionDiscussion

How do you think about it???
– “It must be caused by….!”
– “How about to examine the other way such as…!”
– “This tool will be effective for this experiment!”
– “Your experiment may have problem on…!”
– Etc.etc.etc……

2005/9/30 22CELF Technology Jamboree #4

I thinkI think……

Why the wake up time becomes slow and fast
alternately?
– Something courses to make both priority on Load task and

Read task to be same. (?)
– Once it wake up, then, when it listed into the run queue, it

added after the Load task. (?)
– Once it delayed, because of the longer sleep time, it will be

dispatched upon the condition of the higher priority. (?)
Why it is stable in the first few times?
– ?
Why it is extremely slow at the first time?
– ??

	An experiment about the thread response time- Interim Report -
	Background
	Objectives of the Experiment
	Environment
	Programs for the Experiment
	Programs for the Experiment (contd.)
	READ task
	WRITE task
	Virtual Device Driver
	Load task
	Conditions of the Experiment
	ResultThread switch over time
	ResultThread waking up time
	Considerations
	Behavior of Non-RT thread
	ResultSeparated Non-RT thread switching time into Fast and Slow
	ResultSeparated Non-RT thread wake up time into Fast and Slow
	MeasurementCase: Non-RT Thread (Load tasks 16)
	MeasurementCase: RT Thread (Load tasks 16)
	QUESTION???
	Discussion
	I think…

