
    

Flattened Image Trees:  
    A powerful kernel image format 

Feb 21, 2013 

 

Joel A Fernandes <joelagnel@ti.com> 

1 



  

Goals of this talk 

 

• To understand existing challenges in 

multicomponent Images 

• How these have been solved 

• How these can be tackled using FIT 

• Recent applications (verified boot) 

• Advantages of FIT 

• Future work 

 

 

 
2 



    

Single Component Images 

3 



  

Structure of a Single Component Image 

4 

• Magic number- checks if legacy or FIT 

 

• Payload addr- where to load in memory 

 

• Size – how much to load 

 

• Entry point- where should bootloader jump 

 

• Image type- Single, Multicomponent, Inplace 

 

• Payload- Kernel or other image payload 



  

Booting of a Single Component Image 

5 

• U-boot loads uImage into memory. 

• Parses uImage, copies payload into load addr if reqd 

• Jumps to the entry point 

• Bootm 



  

mkImage can show load addr and ep 

6 

# mkimage -l arch/arm/boot/uImage 
 
Image Name:   Linux-3.7.0-26691-gea93ee1 
Created:      Sat Jan 19 22:01:36 2013 
Image Type:   ARM Linux Kernel Image (uncompressed) 
Data Size:    2842064 Bytes = 2775.45 kB = 2.71 MB 
Load Address: 80008000 
Entry Point:  80008000 



    

Multi Component Images 

7 



  

Single Component Image limitations 

 

• Users found it necessary to have more than one component in a 

uImage such as Ramdisk, DT blob.  Single component images limited. 

 

• Multiple components were required to be included in some cases 

– Some users found it necessary to have more than 1 component 

– Recovery of systems- where you want an initrd to give you an FS 

– Firmware ugrade where it is not easy or clean to download multiple 

components 

– Security- sometimes folks want to include cryptographic signatures. 

 

• A new image type in the “single-component” image header was 

introduced, called IH_MULTI which were supposed to have additional 

components in the image payload 

8 



  

Structure of a Mutli Component Image 

9 

• Embed 

multicomponents by 

Shoehorning of 

Metadata into the 

single image payload 

• A null-terminated table 

of component sizes 

was introduced. This 

table was actually a 

part of the payload 

that contained just the 

kernel image 

previously.. 



  

Structure of a Mutli Component Image 

10 

• Each entry in the table 

was hard-coded to a 

particular pre-defined 

component. table id 1 

was ramdisk, id 2 was 

chosen for device tree 

blob. 

• Fixed mapping of id to 

component type. 

Ramdisk can’t be 

pushed after DT blob 

• Worked.. But has 

drawbacks, more on 

that next.. 



  

Several problems with this approach.. 

11 

• shoehorning meta-data into payload is not a clean method. 

Payload should not have to contain meta-data about an image. 

That’s supposed to go in the headers.. 

• The meta-data stored in MC was limited.. No provision to load a 

component of the Image into a particular location of memory. 

Unlike the kernel which could be loaded to a particular memory 

address before being executed. 

– Which meant all other components had to be executed in-place. 

• Hardcoding of indices of image components in the code. 

Remember I was talking about id 1 being kernel, id 2 being 

ramdisk etc. 

– Associating numbers instead of names to image components is messy 

and not-so-obvious about what index corresponds to what image. The 

meta-data is not self explanatory. 

– What if in the future one image component had to be removed while 

another one was added? All of a sudden the component indexes of all 

components change and code would need to be modified. 

–  Difficult to maintain code. Code is already very hacked up 



  

Several problems with this approach.. 

12 

• No provision to add a component other than kernel, ramdisk, and 

single DT blob to a multi-component Image 

– What if someone wants to add a new crypto graphic signature 

– Or a secondary ramdisk 

– Or an alternate device tree blob? 

– Or some other component that nobody thought of? 

 

•  Sometimes one might want multiple kernel components in an 

image, and I’d like to select one particular kernel for debug for 

example, and one during a production boot. How can we 

represent a structure like this in a Multi-component image? 

 

• Nice approach but doesn’t scale for future designs and 

encourages introduction of more hacks. 

 

 



    

Introducing Tree-like structures 
to represent images 
 
 

13 



  

Add some flexibility to an image … 
                       mix meta-data with data 

14 

• Trees are a nice way to represent data with meta-data 

– Arbritrary arragement of nodes 

– Nodes can be named and can have Properties 

– Properties can even be binary images such as in the case of FIT 

 

So wouldn’t it be cool to represent a kernel image in the form: 

kernel { 

 description = “Linux kernel 3.8” 

 loadaddress = “0x80200000” 

 entrypoint = “0x80008000” 

 data = <binary kernel image> 

} 

 



  

What is a Device Tree? 

15 

● Describes functional layout 

– CPUs 

– Memory 

–  Peripherals 

● Describes configuration 

– Console output 

– Kernel parameters 

– Device names 

The Device Tree is a data structure for describing hardware. 

Rather than hard coding every detail of a device into an operating 

system, many aspect of the hardware can be described in a data 

structure that is passed to the operating system at boot time. The 

device tree is used both by Open Firmware, and in the standalone 

Flattened Device Tree (FDT) form. 



  

Can we (re-)use the Device Tree? 

16 

• Already used in the kernel for “device tree”-based platforms 

• Tools that build device trees already part of the kernel. 

• Device Tree compiler has support to embed binaries in a tree 

property. 



  

Flattened Image Trees 

17 

• An image format that makes use of DT to build an image format in 

the format of a device tree 

• Nodes correspond to image components 

• Property can have binary values using tags 

• Perfect use for multicomponent images 

 

Authored by Marian Balakowicz m8@semihalf.com 

          originally, for Power PC architecture.  

 

mailto:m8@semihalf.com


  

Architectures and Platforms using FIT 

18 

PowerPC:  

 - XPedite1000 board running the PPC 440GX Embedded Processor 

 - MPC8544 (power pc arch) based Socrates board 

 

ARM: 

 - Neo Freerunner running Openmoko uses FIT 

 - ARM Cortex-A8 based Beaglebone. Demo follows 

 - Xilinx Zynq SoC (ARM Cortex-A9) 

 - Freescale i.MX31 based on ARM1136JF-S 

 - Samsung Chromebook running Samsung Exynos 5 Dual Processor 

Coreboot-x86: 

 - Acer Chromebook with Intel Celeron 

Other: 

Microblaze softcpu core from Xilinx 

 



  

The appended DT hack to embed DTB in kernel 

19 

• Many users prefer to have DT blob embedded into kernel 

specially when they don’t care much about multiplatform case 

• Current way to do it is to append a DTB to kernel and build kernel 

with CONFIG_APPENDED_DTB .   

Drawbacks.. 

• Ugly 

• No clarity of what data is appended to the kernel for a third 

person who analyzes the image. Unlike FIT. 

• Only one DT can be appended, unlike FIT.  So really makes the 

image a single-platform one. 

• No kernel support still to build a boot loader image that has a DT 

appended to it. There are hacks floating that need to be applied. 
Rightly so… such a patch would encourage single-platform kernel 

 



  

Appended DT hack code .. 

20 

index abfce28..131558f 100644 

--- a/arch/arm/boot/Makefile 

+++ b/arch/arm/boot/Makefile 

@@ -55,6 +55,9 @@ $(obj)/zImage:        $(obj)/compressed/vmlinux FORCE 

        $(call if_changed,objcopy) 

        @$(kecho) '  Kernel: $@ is ready' 

  

+$(obj)/zImage-dtb.%:   $(obj)/%.dtb $(obj)/zImage 

+       cat $(obj)/zImage $< > $@ 

+ 

 endif 

   

+$(obj)/uImage-dtb.%:   $(obj)/zImage-dtb.% FORCE 

+       $(call if_changed,uimage) 

+       @echo '  Image $@ is ready' 

+ 

 

 



  

A quick demo of FIT to show its flexibility 

21 

For the first demo, we show a FIT containing 

– A Single kernel 

– A single Device Tree blob 

 

– Fit sources (.its files) 

– Using mkimage to build it 

– U-boot commands to boot the image 

– Boot log 

 

• Demo uses a Beaglebone, U-boot v2013.01-rc2, kernel 3.8 

http://www.beagleboard.org/ 

http://www.beagleboard.org/


  

demo 1: A simple FIT 

22 

/dts-v1/; 

/ { 

 description = "Simple image with single Linux kernel and FDT blob"; 

 #address-cells = <1>; 

 images { 

  kernel@1 { 

   description = "Vanilla Linux kernel"; 

   data = /incbin/("./zImage"); 

   type = "kernel"; 

   arch = "arm"; 

   os = "linux"; 

   compression = "none"; 

   load = <0x80008000>; 

   entry = <0x80008000>; 

   hash@1 { 

    algo = "crc32"; 

   }; 

   hash@2 { 

    algo = "sha1"; 

   }; 

  }; 

[contd..]   

Sources of kernel_fdt.its 



  

dt source contd.. 

23 

fdt@1 { 

   description = "Flattened Device Tree blob"; 

   data = /incbin/("./am335x-bone.dtb"); 

   type = "flat_dt"; 

   arch = "arm"; 

   compression = "none"; 

   hash@1 { 

    algo = "crc32"; 

   }; 

   hash@2 { 

    algo = "sha1"; 

   }; 

  }; 

 }; 

/* a notable concept of FIT, “configurations” */ 

 configurations { 

  default = "conf@1"; 

  conf@1 { 

   description = "Boot Linux kernel with FDT blob"; 

   kernel = "kernel@1"; 

   fdt = "fdt@1"; 

  }; 

 }; 

}; 

 



  

Build the FIT using mkimage.. 

24 

 

# mkimage -f kernel_fdt.its kernel_fdt.itb 

FIT description: Simple image with single Linux kernel and FDT blob 

Created:         Thu Jan 31 23:44:13 2013 

 Image 0 (kernel@1) 

  Description:  Vanilla Linux kernel 

  Type:         Kernel Image 

  Compression:  uncompressed 

  Data Size:    2842064 Bytes = 2775.45 kB = 2.71 MB 

  Architecture: ARM 

  OS:           Linux 

  Load Address: 0x80008000 

  Entry Point:  0x80008000 

  Hash algo:    crc32 

  Hash value:   d4e59951 

  Hash algo:    sha1 

  Hash value:   933877a1fa0cad1f1dc4725918eeca4dc872e1ac 

 Image 1 (fdt@1) 

  Description:  Flattened Device Tree blob 

  Type:         Flat Device Tree 

  Compression:  uncompressed 

  Data Size:    11856 Bytes = 11.58 kB = 0.01 MB 

  Architecture: ARM 

  Hash algo:    crc32 

  Hash value:   60fe7c97 

  Hash algo:    sha1 

  Hash value:   b206e49a4177ee285e1cbb225ae764815af4da7c 

 Default Configuration: 'conf@1' 

 Configuration 0 (conf@1) 

  Description:  Boot Linux kernel with FDT blob 

  Kernel:       kernel@1 

  FDT:          fdt@1 

Notice support for strong checksum 

algorithms like MD5, SHA1, ... Just doing a 

crc32 might not good enough for certain 

applications. Only image format that’s so 

robust! 



  

Boot it! 

25 

U-boot commands to load the simple FIT 
 

fitfdt=/boot/kernel_fdt.itb 

setenv loadaddr 0x82000000; 

run mmcargs; 

ext2load mmc ${mmcdev}:2 ${loadaddr} ${fitfdt}; 

 

bootm ${loadaddr}; 

 

 

 

 



  

Boot it! 

26 

U-Boot SPL 2013.01-rc2-00174-ge56cdd7-dirty (Feb 01 2013 - 00:20:19) 

.. 

U-Boot 2013.01-rc2-00174-ge56cdd7-dirty (Feb 01 2013 - 00:20:19) 

.. 

## Booting kernel from FIT Image at 82000000 ... 

   Using 'conf@1' configuration 

   Trying 'kernel@1' kernel subimage 

     Description:  Vanilla Linux kernel 

     Type:         Kernel Image 

     Compression:  uncompressed 

     Data Start:   0x820000ec 

     Data Size:    2842064 Bytes = 2.7 MiB 

     Architecture: ARM 

     OS:           Linux 

     Load Address: 0x80008000 

     Entry Point:  0x80008000 

     Hash algo:    crc32 

     Hash value:   d4e59951 

     Hash algo:    sha1 

     Hash value:   933877a1fa0cad1f1dc4725918eeca4dc872e1ac 

   Verifying Hash Integrity ... crc32+ sha1+ OK 

 

(contd…..) 



  

Boot it! 

27 

(contd…) 

 

## Flattened Device Tree from FIT Image at 82000000 

   Using 'conf@1' configuration 

   Trying 'fdt@1' FDT blob subimage 

     Description:  Flattened Device Tree blob 

     Type:         Flat Device Tree 

     Compression:  uncompressed 

     Data Start:   0x822b5fe4 

     Data Size:    10568 Bytes = 10.3 KiB 

     Architecture: ARM 

     Hash algo:    crc32 

     Hash value:   444390ae 

     Hash algo:    sha1 

     Hash value:   0530f3b384fb47ce796464a70ec618cf7e65b2a3 

   Verifying Hash Integrity ... crc32+ sha1+ OK 

   Booting using the fdt blob at 0x822b5fe4 

   Loading Kernel Image ... OK 

OK 

   kernel loaded at 0x80008000, end = 0x802bddd0 

   Loading Device Tree to 8fe44000, end 8fe49947 ... OK 

  

Starting kernel ... 

 



  

demo 2: Creating a FIT with a recovery configuration 

28 

Add a ramdisk node to the original FIT source. Call it kernel_fdt_rd.its 
\ { 

 images { 

  kernel@1 { 

    .. 

  } 

  fdt@1 {  

    ..  

  } 

ramdisk@1 { 

         description = "recovery ramdisk"; 

         data = /incbin/("./ramdisk.gz"); 

         type = "ramdisk"; 

         arch = "arm"; 

         os = "linux"; 

         compression = "gzip"; 

         load = <00000000>; 

         entry = <00000000>; 

         hash@1 { 

            algo = "sha1"; 

         }; 

 }; 

 

 }; 

}; 



  

demo 2: Creating a FIT with a recovery configuration 

29 

(contd..) 

 

/* Also update the configuration node – add 2 configs: default and recovery */ 

configurations { 

      default = "defaultconf@1"; 

      defaultconf@1 { 

         description = "Boot Linux kernel with FDT blob"; 

         kernel = "kernel@1"; 

         fdt = "fdt@1"; 

      }; 

      recoveryconf@1 { 

         description = "Boot Linux kernel + fdt with ramdisk for recovery"; 

         kernel = "kernel@1"; 

         ramdisk = "ramdisk@1"; 

         fdt = "fdt@1"; 

      }; 

   }; 

}; 



  

demo 2:  Build the FIT 

30 

# mkimage -f kernel_fdt_rd.its kernel_fdt_rd.itb 

FIT description: Simple image with single Linux kernel and FDT blob 

Created:         Sun Feb  3 17:56:05 2013 

 Image 0 (kernel@1) 

 .. .. 

 Image 1 (fdt@1) 

 .. .. 

 Image 2 (ramdisk@1) 

  Description:  recovery ramdisk 

  Type:         RAMDisk Image 

  Compression:  gzip compressed 

  Data Size:    2022580 Bytes = 1975.18 kB = 1.93 MB 

  Architecture: ARM 

  Hash algo:    sha1 

  Hash value:   2bc8b8e2064e2c0ab72dd214996c50fc2b0549da 

 Default Configuration: 'defaultconf@1' 

 Configuration 0 (defaultconf@1) 

  Description:  Boot Linux kernel with FDT blob 

  Kernel:       kernel@1 

  FDT:          fdt@1 

 Configuration 1 (recoveryconf@1) 

  Description:  Boot Linux kernel with ramdisk for recovery and FDT blob 

  Kernel:       kernel@1 

  Init Ramdisk: ramdisk@1 

  FDT:          fdt@1 



  

 
 
demo 2:  Somebody yanked the MMC card 
 
Lets Boot the recovery configuration 

31 

fitfdt=/boot/kernel_fdt_rd.itb 

setenv loadaddr 0x82000000; 

run ramargs; 

ext2load mmc ${mmcdev}:2 ${loadaddr} ${fitfdt}; 

 

bootm ${loadaddr}#recoveryconf; 

 

 

 

 

/* Booting the default conf */ 

bootm ${loadaddr}#defaultconf; 

 

 



  

Bootlog of U-boot booting the #recoveryconf 

32 

U-Boot# run fitrdboot 

4876960 bytes read in 980 ms (4.7 MiB/s) 

## Booting kernel from FIT Image at 82000000 ... 

   Using 'recoveryconf@1' configuration 

   Trying 'kernel@1' kernel subimage 

     Description:  Vanilla Linux kernel 

     Type:         Kernel Image 

  .. .. 

## Loading init Ramdisk from FIT Image at 82000000 ... 

   Using 'recoveryconf@1' configuration 

   Trying 'ramdisk@1' ramdisk subimage 

     Description:  recovery ramdisk 

     Type:         RAMDisk Image 

     Compression:  gzip compressed 

     Data Start:   0x822b8a1c 

     Data Size:    2022580 Bytes = 1.9 MiB 

     Architecture: ARM 

     OS:           Linux 

     Load Address: 0x00000000 

     Entry Point:  0x00000000 

     Hash algo:    sha1 

     Hash value:   2bc8b8e2064e2c0ab72dd214996c50fc2b0549da 

   Verifying Hash Integrity ... sha1+ OK 



  

Bootlog of U-boot booting the #recoveryconf 

33 

 

## Flattened Device Tree from FIT Image at 82000000 

   Using 'recoveryconf@1' configuration 

   Trying 'fdt@1' FDT blob subimage 

.. .. 

OK 

   kernel loaded at 0x80008000, end = 0x802bddd0 

   Loading Ramdisk to 8fc5b000, end 8fe48cb4 ... OK 

   Loading Device Tree to 8fc55000, end 8fc5a947 ... OK 

 

Starting kernel ... 

 

[    1.599982] VFS: Mounted root (ext2 filesystem) on device 1:0. 

[    1.607883] devtmpfs: mounted 

[    1.611581] Freeing init memory: 248K 

Please press Enter to activate this console. 

 

[root@arago /]# 

[root@arago /]# 

[root@arago /]# 

[root@arago /]# 



  

More use cases of FIT 

34 

Debug vs Production Kernel… 
 
One could have multiple kernels one with maybe debug options enabled, one for 
production. They could both have their own configuration nodes in the FIT 
 
Then the user could boot a #debugkernel for debugging and a #production configuration for 
production… all using the same FIT image. 
 

A multiplatform Kernel image 
 

• Multiple DTBs can be embedded in a FIT; each board/platform can have their own 
configuration node that has their own DTB. U-boot can read the EEPROM on boards, and 
boot the right “configuration” node like the earlier example. 
 

• Can combine multiple kernel images, device tree blobs and root file  system images in 
arbitrary combinations; this allows for example  for multibooting the same image on 
different boards by selecting  the right DTB. 



  

Another real world usecase…. Verified boot by Simon Glass 

35 

Just showing how 

flexible the image format 

is that one could extend 

it easily for a usecase 

that wasn’t even thought 

off! With very little 

“hack” code. 

 
/ { 
        images { 
                kernel@1 { 
                 data = /incbin/("..."); 
                 type = “kernel"; 
                 arch = "arm"; 
                 os = "linux"; 
                 compression = "none"; 
                 load = <0x111>; 
                 entry = <0x222>; 
                 kernel-version = <1>; 
                 hash@1 { 
                 algo = "sha1"; 
                  value = <....>; 
                 }; 
         signature@1 { 
                 algo = "sha1,rsa2048"; 
                 key-hint = "dev"; 
                 description = “Dev-signed kernel 3.8.0-33, snow FDT”; 
                 signer = “mkimage”; 
                 signer-version = “ v2013.01”; 
                 value = <....>; 
         }; 
         signature@2 { 
                 algo = "sha1,rsa2048"; 
                 key-hint = “production"; 
                 description = “Dev-signed kernel 3.8.0-33, snow FDT”; 
                 signer = “mkimage”; 
                 signer-version = “ v2013.01”; 
                 value = <....>; 
         };};}; 



  

And extended even more for better security.. Signed 
configurations.  
 
What if someone uses the same signed images, but changes the configuration? 

36 

 
 
 
 configurations { 
  default = "conf@1"; 
  conf@1 { 
   kernel = "kernel@1"; 
   fdt = "fdt@1"; 
   signature@1 { 
    algo = "sha1,rsa2048"; 
    key-name-hint = "dev"; 
    sign-images = "fdt", "kernel"; 
   }; 
  }; 
 }; 



  

And even more uses! 

37 

• Assume you want to boot over DHCP or similar, where you can 

provide just a single image file for download. Here it is definitely nice if 

you can bundle the kernel image and the DTB into one image file. 

 

• Upgrade procedures for devices, where the vendor wants to be able 

to distribute a single file  for  his  target systems   to  avoid  customers  

bricking  their  devices  by  choosing incompatible combinations. 



  

Future work.. 

38 

•  Kernel build support 


