Analysis of User Level Device Driver usability
In embedded application
-Technique to achieve good real-time performance-

Katsuya Matsubara Takanari Hayama
Hitomi Takahashi Hisao Munakata

IGEL Co., Ltd
Renesas Solutions Corp.

2006/4/11 CELF ELC 2006

N

Background

Device Driver Development in Embedded World is different in the
following senses:
— Non-common New Devices

» Due to newly developed devices, it is quite hard to re-use the device
driver from previous development.

 Some of the device are common in embedded world, but not in the
Linux world, i.e. new in Linux.

— Closed relationship with Applications

» Tends to be monolithic system architecture. Application requires to
manage devices directly in fine-grain.

* Only one application dominantly uses the device.
— Single-user, multi-task
— IPR issue

— Requires easiness of device driver development
« Short development cycle

2006/4/11 CELF ELC 2006 2

& Wz —

-

Objective

B Design of a framework for User-Level Device Driver

B Evaluation on Implementation Methodology and its
Environment

B Related Work

— Peter Chubb, “Get more device drivers out of kernel,”
OLS2004.

2006/4/11 CELF ELC 2006 3

U8, CEL o

.

Required Features to Realize
ULDD

B Memory Access

— 1/0 Memory
* In many cases, devices are controlled over registers.
* In some cases, access to device memory is required to perform 1/O.

— RAM
« Large contiguous memory is needed for DMA transfer etc.

B Interrupt Handling

— Communication between device and host CPU needs to be
interrupt driven.

B [atency Guarantee

— How quick can a user task run after reception of interrupt, needed
to be guaranteed or presumable.

B Disabling Interrupt

— Interrupt handler needs to be able to disable interrupts and run
dominantly.

2006/4/11 CELF ELC 2006 4

Design Principal

Memory Access
— Access to I/O Memory
» Allow mmap(2) the 1/O registers
— Contiguous Memory Allocation
» Allow mmap(2) the contiguous memory allocated by the kernel.
B Interrupt Handling
— Two Methodologies to Awake User Task
« Synchronous: Wake up task sleeping on I/O event
* Asynchronous: Send UNIX signal
B Latency Guarantee and Disabling Interrupt
— RT Task
— NPTL
— O(1) Scheduler
— Kernel Preemption etc.

2006/4/11 CELF ELC 2006 5

ek

Memory Access

2006/4/11 CELF ELC 2006

t‘ CELITUX Foram

Memory Access

B Access to I/O memory such as RAM and registers.

— Make accessible by memory mapped I/O (mmap) from the
user task.

2006/4/11 CELF ELC 2006 7

t‘ CELITUX Foram

Contiguous Memory Allocation

B Allocate contiguous memory in the kernel driver, and
let user task to access through mmap(2).

mory using
urn

2006/4/11 CELF ELC 2006 8

ek

Interrupt Handling

2006/4/11 CELF ELC 2006

U8, CEL o

-

Synchronous Interrupt Handling

B \Wake up the task from the kernel using synchronous

file 1/O.
User Level (3) Return from
DD rounous 1/O request
(1) Wait fo
mterrupt 7 :
synchronously IRQ hook driver
/ (2) Interrupt Linux kernel
/ -
/" Device

2006/4/11 CELF ELC 2006 10

API for Waiting Interrupt
Synchronously

B Specify IRQ number to wait by [1rgno]
intr_fd = open(*“/proc/irghook/[i1rgno]”’,
O_RDWR) ;

B Wait for Interrupt
read(intr_fd, &1, sizeof(int));

2006/4/11 CELF ELC 2006 11

U8, CEL o

N

Asynchronous Interrupt Handling

B Send UNIX signal to pre-registered task when
Interruption occures.

User Level
DD

registered Signal Handler
(1) Register Signa

Hamdter v

IRQ hook driver

/ (2) Interrupt Linux kernel

/ -
/" Device

2006/4/11 CELF ELC 2006 12

API for Waiting Interrupt
Asynchronously

B Registering Interrupt Handler
act_sig.sa_handler = 1nput_handler;
sigaction(SIGIO, &act _sig, NULL);

B Specify IRQ Number to wait by [1rgno]
intr_fd = open(*“/proc/irghook/[1rgno]”,
O_RDONLY);

B Wait for Interrupt
oflags = fentl(airgfd, F_GETFL);
fentl (irgfd, F _SETFL, oflags | FASYNC);

read(intr_fd, &1, sizeof(int));

2006/4/11 CELF ELC 2006 13

ek

Latency Guarantee and Disabling
Interrupt

2006/4/11 CELF ELC 2006

U8, CEL o

.

Latency Guarantee and Disabling
Interrupt

B To restrain context switch while device driver is
processing interrupt, and to minimize the latency to
wake up device driver, RT task shall be used.

B Linux 2.6 kernel that employs improved NPTL, O(1)
Scheduler, Kernel Preemption etc should minimize
the latency.

Evaluation to see how these work using real ULDD
Implementation!!

2006/4/11 CELF ELC 2006 15

& Wz —

e

Prototype Implementation

To Evaluate, Implemented SM501 UART Device Driver on Renesas
RTS7751R2D Evaluation Board as ULDD

B SM501 UART Device
— 8250 Compatible

— Supports Byte I/O Mode and
FIFO Mode (For this
experiment, we used byte
/0 mode)

http://tree.celinuxforum.orqg/pubwiki/moin.cgi/RTS7751R2DHandl ingManual

2006/4/11 CELF ELC 2006 16

& ez

/O Memory In the Kernel

int 1ommap_mmap(struct file *filp,
struct vm_area struct *vma) {

size_t size = vma->vm_end - vma->vm_start;

unsigned long offset =
vma->vm_pgoff << PAGE_SHIFT;

if (1o _remap page range(vma, vma->vm_start,
offset, size,
vma->vm_page_prot))

return -EAGAIN;
return O;

17

2006/4/11 CELF ELC 2006

/O Memory Access In ULDD

/* mmap the 10 memory */
addr = mmap(0, I10MEM SIZE, PROT_READ]PROT WRITE,
MAP_SHARED, iomap_fd, I0OMEM_ ADDR);

/* wait for an interrupt and then receive data */
iIf (read(intr_fd, &1, sizeof(int)) == sizeof(int)) {
if ((st = *(u_char *)(addr + STATREG_OFFSET)
& 0x01) {
do {
/* get a byte from RX register */
dt = *(u_long *)(addr + RXREG_OFFSET);

2006/4/11 CELF ELC 2006 18

& Wz —

N

Interrupt Handling in the Kernel

irgreturn_t irgq_handler(int i1rq, void *vidp,
struct pt_regs *regs) {

1f(1dp->fasync){
/* Notify by UNIX signal (SIGIO) */
kill _fasync(&idp->fasync, SIGIO, POLL _IN);
} else {
/* Wakeup task by usual notification */
wake up(&1dp->q);

+
return IRQ HANDLED;

}

2006/4/11 CELF ELC 2006 19

Interrupt Handling in ULDD
(Synchronous)

/* mmap the 10 memory */
addr = mmap(0, IOMEM_SI1ZE, PROT_READ|PROT WRITE,
MAP_SHARED, momap_ fd, IOMEM_ADDR);

/* wait for an interrupt and then receive data */
if (read(intr_fd, &1, sizeof(int)) == sizeof(int)){
1T ((st = *(u_char *)(addr + STATREG _OFFSET))
& Ox01) {
do {
/* get a byte from RX register */
dt = *(u_long *)(addr + RXREG_OFFSET);

2006/4/11 CELF ELC 2006 20

& ez
Interrupt Handling in ULDD

(Asynchronous)

oflags = fentl(intr_fd, F_GETFL);

fentl (aintr_fd, F_SETFL, oflags | FASYNC);
s.sa handler = sigio_handler;
sigaction(SIGI0, &s, NULL);

read(intr_fd, &1, sizeof(int));

+
void sigio handler(void) {
1IT((st = *(u_char *)(addr+STATREG_OFFSET)) & 0x01) {
do {
/* get a byte from RX register */
st = *(u_long *)(addr+RXREG_OFFSET);

2006/4/11 CELF ELC 2006 21

-

Experiments and Evaluation

B Performed experiments on RTS7751R2D’s SM501
UART ULDD device driver under the following
condition:

1. Evaluation on Interrupt Handling
a. File 1/0 (Synchronous) vs UNIX Signal (Asynchronous)

2. Evaluation on Latency
a. RT Task vs non-RT Task
b. Kernel Level D/D vs User Level D/D
C. Linux2.4vs 2.6

2006/4/11 CELF ELC 2006 22

Environment for Experiments

m H/W

— Renesas RTS-7751R2D evaluation board
* Renesas SH7751R(SH-4) 240MHz
* 64MB RAM, 100Mbps Ethernet
— NFS Server for rootfs
e Intel Pentium4 2.8GHz
« 512MB RAM, IDE HDD, 100Mbps Ethernet
— Serial Terminal

100Mbps Ethernet

« Intel Pentium4 laptop |:|
» Connected with 32kbps serial 00
m S/W
— Linux 2.6.13.4 ()
— glibc 2.3.3
— Compile option: -O2 -g) Serial cross

— Latency Measurement
* Kernel Space: current_kernel_timer()

e User Space:
clock _gettime(CLOCK_REALTIME)

NFS Server cable

Terminal

2006/4/11 CELF ELC 2006 23

& ez
Architecture: SM501 UART ULDD
and Terminal Application

Shared Buffer
RT Thread

Output Data in Pseudb
. 4SMSOl U RT -
ASCII text Terminal which reads
' 1Byte per IRQ)

@n-RT Thread

I/O Memory Map Driver I Interrupt Hook Driver l

Linux Kernel

BaUd rate SEt t SM501 UART Serial Terminal
38400bps Xmit 1MB of Dag_

2006/4/11 CELF ELC 2006 24

ek

Evaluation on Interrupt Handling

2006/4/11 CELF ELC 2006

& Wz —

-

Experiment 1-a: Comparison on
Interrupt Reception Methodology

B Measure the latency between the time interrupt hook driver
receipt the interrupt and ULDD wakes up, i.e. either one of the
followings

— Synchronous (File 1/0): Return from the read() call

— Asynchronous (UNIX Siagnal): Signal handler wakes up
Measure the Latency J

Terminal SM501 UART

App ULDD
Notify Interrupt
/ Synchronous or
_ , Asynchronously

I/O Memory Map Driver Interrupt Hook Driver
Linux Kernel
Serlal Term
AN

Byte Data Input
2006/4/11 CELF ELC 2006 26

& Wz —

.

Experiment 1-a : Result

(Sychronous)

Measurement 600
70
: Average (ms) 18.06
60 | :
- | Maximum (ms) 50.1
B I .
o 40 : Minimum (ms) 0.076
E 30 I B The worst case was 50ms.
20 | B The worst case scenario is not
|
10 : the rare case.
o HA e
o (@)} (e'e] N~ O Ko <
V V — N (4p] < Ln
V V V \V V

Latency (ms)

2006/4/11 CELF ELC 2006 27

& Wz —

.

Experiment 1-a : Result

(Asychronous)

Measurement 600
o0 : Average (ms) 18.15
0 ¢ | Maximum (ms) 50.02
. 40 1 : Minimum (ms) 0.019
e 30 | ' |
= I B The worst case was again 50ms.
20 | I B No big difference from
10 : synchronous one.
G111 L Y NIRRT | Y |
o (@) (00] N~ (o) Lo <
V V — AN ™ < Lo
V V V V V

Latency (ms)

2006/4/11 CELF ELC 2006 28

U8, CEL o

e

Experiment 1-a: Observations

B No obvious differences have been observed between
synchronous and asynchronous interrupt handling.

B However, when transmission speed is increased, i.e.
Increase interruption frequency, asynchronous
method using UNIX signal couldn’t catch up and, with
“I/O possible” error in glibc, application has
terminated.

2006/4/11 CELF ELC 2006 29

ek

Evaluation on Latency
- RT Task vs non-RT Task -

2006/4/11 CELF ELC 2006

& ez

Experiment 2-a:
Characteristic of RT Task

B By running CPU consuming disturbance in parallel, measure the
Impact on ULDD task running as either RT or Non-RT Task.

Change the number of j
disturbance tasks /I/I\/leasu re the th roughpuﬂ
T S—

. ()
Disturbance Terminal @SMSOl UART)

TEX App ULDD Create task in
/ \/ RT or Non-RT

I/O Memory Map Driver Interrupt Hook Driver _/

Linux Kernel '_ '_
Serial Terminal

SM501 UART —
AN

1MB Byte Input

2006/4/11 CELF ELC 2006 31

& ez

Experiment 2-a:
Results and Observations

B No difference between non- -
RT and RT when there is no
disturbance tasks.

B |n existence of disturbance 25 |
tasks, proportional to
number of disturbance task

20
545 | \
delayed. 10

the non-RT task has been

0 1 2 3 4

30 —i — — I

——RT
—#— Non—RT

Bitrate (kbps)

B |n the case of RT task, no
iInfluence of disturbance task
has been observed. 0

Number of Disturbance Task

2006/4/11 CELF ELC 2006 32

‘é
Evaluation on Latency

- Kernel Level D/D vs User Level D/D -

2006/4/11 CELF ELC 2006

& ez

Experiment 2-b:
Overhead by Implmenting ULDD

B Evaluate the influence of layers device driver is
Implemented in.

Measure the Throughp{'

N
A
Te/:m'na' UART Compare Terminal
i ULDD between ULDD App
p‘j V and KLDD X‘
I/O Memory Ma SM501 UART
_ Interrupt Hook Driver
Driver KLDD
Linux Kernel D Linux Kernel
SM501 UART B — s SM501 UART

AR
2006/4/11 CELF ELC 2006 34

U8, CEL o

.

Experiment 2-b:
Result and Observation

B ULDD got stable result
than that of KLDD

B This is the result of
unification of device
driver and consumer
application, i.e. resulting
In lesser number context

switch and memory copy.

2006/4/11

Throughput (kbps)

31.00

3050
30.00
2950

29.00

2850

28.00
27.50
27.00
26.50

ULDD (read)

KLDD (read)

ULDD (write)

KLDD (write)

MAX
MIN

30.04
29.71

30.15
29.08

30.69
30.68

28.08
28.08

AVG

29.95

29.69

30.68

28.08

CELF ELC 2006

35

ek

Evaluation on Latency
- Linux 2.4 vs 2.6 -

2006/4/11 CELF ELC 2006

& Wz —

o

Experiment 2-c: Linux 2.6 vs 2.4

B Evaluate how new features in 2.6 helps ULDD

Change # of distu rbancci'
EEE /I/I\/Ieasure Throughputj

. ®
Disturbance Terminal .5|\/|501 UART - N\

Task App ULDD Used 2.4.20 /

I/0O Memory Map Driver Interrupt Hook Driver % S
Linux Kernel 2.4/2. D

SM501 UART

A
Feed 1MB of Data
2006/4/11 CELF ELC 2006 37

B None major difference
has been observed.

B This may due to:

— Too few tasks

— Frequency of interruption
IS not high enough.

EvkL—Fk(kbps)

10

Experiment 2-c: Results

SNELTOEARH

—&— RealTime(2.6.13)

—8— NonRealTime(2.6.13)

RealTime(2.4.20) NonRealTime(2.4.20)

2006/4/11 CELF ELC 2006

38

-

Conclusion

B Implemented re-using existing File 1/O, interrupt
notification mechanism. No new system call is added.

B Implemented real ULDD device driver using the
functionality above.

B Evaluated the usability of ULDD under embedded
environment.

2006/4/11 CELF ELC 2006 39

& Wz —

-

Future Work

B Evaluate the feature like RT_PREEMPT to see the
Impact to ULDD.

B Evaluate ULDD implementation on more various
device to see Its characteristic.

B Promote the use of ULDD ©

2006/4/11 CELF ELC 2006 40

