
2006/4/11 CELF ELC 2006

Analysis of User Level Device Driver usability Analysis of User Level Device Driver usability
in embedded applicationin embedded application

--Technique to achieve good realTechnique to achieve good real--time performancetime performance--

Katsuya Matsubara Takanari Hayama
Hitomi Takahashi Hisao Munakata

IGEL Co., Ltd
Renesas Solutions Corp.

2006/4/11 2CELF ELC 2006

BackgroundBackground

Device Driver Development in Embedded World is different in the
following senses:

– Non-common New Devices
• Due to newly developed devices, it is quite hard to re-use the device

driver from previous development.
• Some of the device are common in embedded world, but not in the

Linux world, i.e. new in Linux.
– Closed relationship with Applications

• Tends to be monolithic system architecture. Application requires to
manage devices directly in fine-grain.

• Only one application dominantly uses the device.
– Single-user, multi-task
– IPR issue
– Requires easiness of device driver development

• Short development cycle

2006/4/11 3CELF ELC 2006

ObjectiveObjective

Design of a framework for User-Level Device Driver
Evaluation on Implementation Methodology and its
Environment
Related Work
– Peter Chubb, “Get more device drivers out of kernel,”

OLS2004.

2006/4/11 4CELF ELC 2006

Required Features to Realize Required Features to Realize
ULDDULDD

Memory Access
– I/O Memory

• In many cases, devices are controlled over registers.
• In some cases, access to device memory is required to perform I/O.

– RAM
• Large contiguous memory is needed for DMA transfer etc.

Interrupt Handling
– Communication between device and host CPU needs to be

interrupt driven.
Latency Guarantee
– How quick can a user task run after reception of interrupt, needed

to be guaranteed or presumable.
Disabling Interrupt
– Interrupt handler needs to be able to disable interrupts and run

dominantly.

2006/4/11 5CELF ELC 2006

Design PrincipalDesign Principal

Memory Access
– Access to I/O Memory

• Allow mmap(2) the I/O registers
– Contiguous Memory Allocation

• Allow mmap(2) the contiguous memory allocated by the kernel.
Interrupt Handling
– Two Methodologies to Awake User Task

• Synchronous: Wake up task sleeping on I/O event
• Asynchronous: Send UNIX signal

Latency Guarantee and Disabling Interrupt
– RT Task
– NPTL
– O(1) Scheduler
– Kernel Preemption etc.

2006/4/11 CELF ELC 2006

Memory AccessMemory Access

2006/4/11 7CELF ELC 2006

Kernel Memory Space

Memory AccessMemory Access

Access to I/O memory such as RAM and registers.
– Make accessible by memory mapped I/O (mmap) from the

user task.
User Task Memory Space

(1) Calls mmap

(2) Map the I/O region by calling
io_remap_page_range()

(3) Access directly to H/W
thru mmap’ed region

2006/4/11 8CELF ELC 2006

Contiguous Memory AllocationContiguous Memory Allocation

Allocate contiguous memory in the kernel driver, and
let user task to access through mmap(2).

KernelUser Task

(1) Request to allocate
contiguous memory thru
ioctl.

(5) Access directly to H/W
thru mmap’ed region.

(3) Request to mmap the
allocated region. (4) Map the memory region

allocated in the previous call.

(2) Allocate contiguous memory using
__get_free_pages() and return
address.

2006/4/11 CELF ELC 2006

Interrupt HandlingInterrupt Handling

2006/4/11 10CELF ELC 2006

Synchronous Interrupt HandlingSynchronous Interrupt Handling

Wake up the task from the kernel using synchronous
file I/O.

Device

Linux kernel

IRQ hook driver

User Level
DD

(2) Interrupt

(1) Wait for
interrupt

synchronously

(3) Return from
synchrounous I/O request

2006/4/11 11CELF ELC 2006

API for Waiting Interrupt API for Waiting Interrupt
SynchronouslySynchronously

Specify IRQ number to wait by [irqno]
intr_fd = open(“/proc/irqhook/[irqno]”,
O_RDWR);

Wait for Interrupt
read(intr_fd, &i, sizeof(int));

2006/4/11 12CELF ELC 2006

Asynchronous Interrupt HandlingAsynchronous Interrupt Handling

Send UNIX signal to pre-registered task when
interruption occures.

Device

Linux kernel

IRQ hook driver

User Level
DD

(2) Interrupt

(1) Register Signal
Handler

(3) Wakes up pre-
registered Signal Handler

2006/4/11 13CELF ELC 2006

API for Waiting Interrupt API for Waiting Interrupt
AsynchronouslyAsynchronously

Registering Interrupt Handler
act_sig.sa_handler = input_handler;
sigaction(SIGIO, &act_sig, NULL);

Specify IRQ Number to wait by [irqno]
intr_fd = open(“/proc/irqhook/[irqno]”,
O_RDONLY);

Wait for Interrupt
oflags = fcntl(irqfd, F_GETFL);
fcntl(irqfd, F_SETFL, oflags | FASYNC);
read(intr_fd, &i, sizeof(int));

2006/4/11 CELF ELC 2006

Latency Guarantee and Disabling Latency Guarantee and Disabling
InterruptInterrupt

2006/4/11 15CELF ELC 2006

Latency Guarantee and Disabling Latency Guarantee and Disabling
InterruptInterrupt

To restrain context switch while device driver is
processing interrupt, and to minimize the latency to
wake up device driver, RT task shall be used.
Linux 2.6 kernel that employs improved NPTL, O(1)
Scheduler, Kernel Preemption etc should minimize
the latency.

Evaluation to see how these work using real ULDD
implementation!!

2006/4/11 16CELF ELC 2006

Prototype ImplementationPrototype Implementation

SM501 UART Device
– 8250 Compatible
– Supports Byte I/O Mode and

FIFO Mode（For this
experiment, we used byte
I/O mode）

http://tree.celinuxforum.org/pubwiki/moin.cgi/RTS7751R2DHandlingManual

To Evaluate, Implemented SM501 UART Device Driver on Renesas
RTS7751R2D Evaluation Board as ULDD

2006/4/11 17CELF ELC 2006

I/O Memory in the KernelI/O Memory in the Kernel

int iommap_mmap(struct file *filp,
struct vm_area_struct *vma) {

size_t size = vma->vm_end - vma->vm_start;
unsigned long offset =

vma->vm_pgoff << PAGE_SHIFT;

...
if (io_remap_page_range(vma, vma->vm_start,

offset, size,
vma->vm_page_prot))

return -EAGAIN;
return 0;

}

2006/4/11 18CELF ELC 2006

I/O Memory Access in ULDDI/O Memory Access in ULDD

/* mmap the IO memory */

addr = mmap(0, IOMEM_SIZE, PROT_READ|PROT_WRITE,
MAP_SHARED, iomap_fd, IOMEM_ADDR);

/* wait for an interrupt and then receive data */
if (read(intr_fd, &i, sizeof(int)) == sizeof(int)) {

if ((st = *(u_char *)(addr + STATREG_OFFSET)
& 0x01) {
do {

/* get a byte from RX register */

dt = *(u_long *)(addr + RXREG_OFFSET);

2006/4/11 19CELF ELC 2006

Interrupt Handling in the KernelInterrupt Handling in the Kernel

irqreturn_t irq_handler(int irq, void *vidp,
struct pt_regs *regs) {

...
if(idp->fasync){

/* Notify by UNIX signal (SIGIO) */

kill_fasync(&idp->fasync, SIGIO, POLL_IN);
} else {

/* Wakeup task by usual notification */

wake_up(&idp->q);
}
return IRQ_HANDLED;

}

2006/4/11 20CELF ELC 2006

Interrupt Handling in ULDDInterrupt Handling in ULDD
(Synchronous)(Synchronous)

/* mmap the IO memory */
addr = mmap(0, IOMEM_SIZE, PROT_READ|PROT_WRITE,

MAP_SHARED, iomap_fd, IOMEM_ADDR);

/* wait for an interrupt and then receive data */

if (read(intr_fd, &i, sizeof(int)) == sizeof(int)){

if ((st = *(u_char *)(addr + STATREG_OFFSET))
& 0x01) {
do {

/* get a byte from RX register */
dt = *(u_long *)(addr + RXREG_OFFSET);

2006/4/11 21CELF ELC 2006

Interrupt Handling in ULDDInterrupt Handling in ULDD
(Asynchronous)(Asynchronous)

oflags = fcntl(intr_fd, F_GETFL);

fcntl(intr_fd, F_SETFL, oflags | FASYNC);
s.sa_handler = sigio_handler;
sigaction(SIGIO, &s, NULL);
read(intr_fd, &i, sizeof(int));
...

}

void sigio_handler(void) {
if((st = *(u_char *)(addr+STATREG_OFFSET)) & 0x01) {

do {

/* get a byte from RX register */
st = *(u_long *)(addr+RXREG_OFFSET);

2006/4/11 22CELF ELC 2006

Experiments and EvaluationExperiments and Evaluation

Performed experiments on RTS7751R2D’s SM501
UART ULDD device driver under the following
condition:
1. Evaluation on Interrupt Handling

a. File I/O (Synchronous) vs UNIX Signal (Asynchronous)
2. Evaluation on Latency

a. RT Task vs non-RT Task
b. Kernel Level D/D vs User Level D/D
c. Linux 2.4 vs 2.6

2006/4/11 23CELF ELC 2006

Environment for ExperimentsEnvironment for Experiments

H/W
– Renesas RTS-7751R2D evaluation board

• Renesas SH7751R(SH-4) 240MHz
• 64MB RAM, 100Mbps Ethernet

– NFS Server for rootfs
• Intel Pentium4 2.8GHz
• 512MB RAM, IDE HDD, 100Mbps Ethernet

– Serial Terminal
• Intel Pentium4 laptop
• Connected with 32kbps serial

S/W
– Linux 2.6.13.4
– glibc 2.3.3
– Compile option: -O2 -g
– Latency Measurement

• Kernel Space: current_kernel_timer()
• User Space:

clock_gettime(CLOCK_REALTIME)
Terminal

NFS Server

100Mbps Ethernet

Serial cross
cable

2006/4/11 24CELF ELC 2006

Linux KernelLinux Kernel

I/O Memory Map DriverI/O Memory Map Driver Interrupt Hook DriverInterrupt Hook Driver

Architecture: SM501 UART ULDD Architecture: SM501 UART ULDD
and Terminal Applicationand Terminal Application

SM501 UART
H/W

Pseudo
Terminal

App

Output Data in

ASCII text

Shared Buffer

Serial TerminalBaud rate set to
38400bps Xmit 1MB of Data

RT Thread
which reads
1Byte per IRQ

RT Thread
which reads
1Byte per IRQ

SM501 UART

ULDD

non-RT Thread

2006/4/11 CELF ELC 2006

Evaluation on Interrupt HandlingEvaluation on Interrupt Handling

2006/4/11 26CELF ELC 2006

Experiment 1Experiment 1--a: Comparison on a: Comparison on
Interrupt Reception MethodologyInterrupt Reception Methodology

Measure the latency between the time interrupt hook driver
receipt the interrupt and ULDD wakes up, i.e. either one of the
followings
– Synchronous (File I/O): Return from the read() call
– Asynchronous (UNIX Signal): Signal handler wakes up

Linux Kernel

I/O Memory Map Driver Interrupt Hook Driver

SM501 UART

Terminal
App

Serial Term

Byte Data Input

Measure the Latency

Notify Interrupt
Synchronous or
Asynchronously

SM501 UART
ULDD

2006/4/11 27CELF ELC 2006

Experiment 1Experiment 1--a : Result a : Result
((SychronousSychronous))

0.076Minimum (ms)
50.1Maximum (ms)

18.06Average (ms)
600Measurement

The worst case was 50ms.
The worst case scenario is not
the rare case.

0

10

20

30

40

50

60

70

<0 <9 <1
8

<2
7

<3
6

<4
5

<5
4

Latency (ms)

Ti
m

es

2006/4/11 28CELF ELC 2006

Experiment 1Experiment 1--a : Result a : Result
((AsychronousAsychronous))

0

10

20

30

40

50

60

<0 <9 <1
8

<2
7

<3
6

<4
5

<5
4

Latency (ms)

Ti
m

es

0.019Minimum (ms)
50.02Maximum (ms)
18.15Average (ms)

600Measurement

The worst case was again 50ms.
No big difference from
synchronous one.

2006/4/11 29CELF ELC 2006

Experiment 1Experiment 1--a: Observationsa: Observations

No obvious differences have been observed between
synchronous and asynchronous interrupt handling.
However, when transmission speed is increased, i.e.
increase interruption frequency, asynchronous
method using UNIX signal couldn’t catch up and, with
“I/O possible” error in glibc, application has
terminated.

2006/4/11 CELF ELC 2006

Evaluation on LatencyEvaluation on Latency
-- RT Task RT Task vsvs nonnon--RT Task RT Task --

2006/4/11 31CELF ELC 2006

Linux Kernel

I/O Memory Map Driver Interrupt Hook Driver

By running CPU consuming disturbance in parallel, measure the
impact on ULDD task running as either RT or Non-RT Task.

Experiment 2Experiment 2--a:a:
Characteristic of RT TaskCharacteristic of RT Task

SM501 UART

Terminal
App

SM501 UART
ULDD

1MB Byte Input

Measure the throughput

Create task in
RT or Non-RT

Serial Terminal

Disturbance
Task

Change the number of
disturbance tasks

2006/4/11 32CELF ELC 2006

Experiment 2Experiment 2--a:a:
Results and ObservationsResults and Observations

No difference between non-
RT and RT when there is no
disturbance tasks.
In existence of disturbance
tasks, proportional to
number of disturbance task
the non-RT task has been
delayed.
In the case of RT task, no
influence of disturbance task
has been observed. 0

5

10

15

20

25

30

35

0 1 2 3 4

Number of Disturbance Task

B
it
ra

te
(k

bp
s)

RT

Non-RT

2006/4/11 CELF ELC 2006

Evaluation on LatencyEvaluation on Latency
-- Kernel Level D/D Kernel Level D/D vsvs User Level D/D User Level D/D --

2006/4/11 34CELF ELC 2006

Linux Kernel

SM501 UART

KLDD
Linux Kernel

I/O Memory Map

Driver
Interrupt Hook Driver

Experiment 2Experiment 2--b:b:
Overhead by Overhead by ImplmentingImplmenting ULDDULDD

Evaluate the influence of layers device driver is
implemented in.

SM501 UART

Terminal
App

Measure the Throughput

SM501
UART
ULDD

SM501 UART

Terminal
App

Compare
between ULDD
and KLDD

2006/4/11 35CELF ELC 2006

Experiment 2Experiment 2--b:b:
Result and ObservationResult and Observation

ULDD got stable result
than that of KLDD
This is the result of
unification of device
driver and consumer
application, i.e. resulting
in lesser number context
switch and memory copy.

26.50

27.00

27.50

28.00

28.50

29.00

29.50

30.00

30.50

31.00

T
h
ro

u
gh

pu
t

(k
bp

s)

MAX 30.04 30.15 30.69 28.08

MIN 29.71 29.08 30.68 28.08

AVG 29.95 29.69 30.68 28.08

ULDD (read) KLDD (read) ULDD (write) KLDD (write)

2006/4/11 CELF ELC 2006

Evaluation on LatencyEvaluation on Latency
-- Linux 2.4 Linux 2.4 vsvs 2.6 2.6 --

2006/4/11 37CELF ELC 2006

Linux Kernel 2.4/2.6

I/O Memory Map Driver Interrupt Hook Driver

Experiment 2Experiment 2--c: Linux 2.6 c: Linux 2.6 vsvs 2.42.4

Evaluate how new features in 2.6 helps ULDD

SM501 UART

Terminal
App

SM501 UART
ULDD

Feed 1MB of Data

Measure Throughput

Used 2.4.20 /
2.6.13.4

Disturbance
Task

Change # of disturbance
tasks

2006/4/11 38CELF ELC 2006

Experiment 2Experiment 2--c: Resultsc: Results

None major difference
has been observed.
This may due to:
– Too few tasks
– Frequency of interruption

is not high enough.

0

5

10

15

20

25

30

35

0 1 2 3 4

外乱プロセス数
ビ

ッ
ト

レ
ー

ト
(k

b
p
s
)

RealTime(2.6.13) NonRealTime(2.6.13)

RealTime(2.4.20) NonRealTime(2.4.20)

2006/4/11 39CELF ELC 2006

ConclusionConclusion

Implemented re-using existing File I/O, interrupt
notification mechanism. No new system call is added.
Implemented real ULDD device driver using the
functionality above.
Evaluated the usability of ULDD under embedded
environment.

2006/4/11 40CELF ELC 2006

Future WorkFuture Work

Evaluate the feature like RT_PREEMPT to see the
impact to ULDD.
Evaluate ULDD implementation on more various
device to see its characteristic.
Promote the use of ULDD ☺

