
Making Linux Small

Presented by: Gene Sally
CELF Conference

2Drop by www.timesys.com.

Today’s Topics

�Fitting Linux in a small system
�Reducing the size of your RFS

�Starting off right
�Tools of the trade

�Reducing size of kernel
�Cull out what’s not necessary
�Small!= Low Functionality

�Approaches configuring your RFS
�What libc to pick, if any
�Removing deadweight from RFS
�Space saving file systems

3Drop by www.timesys.com.

Small System: Defined

�Memory
� Non-volatile: 4 MB
� Volatile RAM: 4 MB

�Processor
� ARM-based
� Eden (x86 Licensee)

�Devices Like This
� GumStix 64 MB RAM (I guess that’s not so small)
� PicoTux 2 - 4 MB RAM
� Kontron E2Brain: 1 - 16 MB

A lot larger than a small system from a few years back ����

4Drop by www.timesys.com.

Small RFS: Tools of the trade

� Busybox busybox.net
A multi-call binary providing reduced-functionality

implementation of most gnu command-line tools
� uClibc uclibc.org

Alternate C standard library optimized for size, busybox
symboit

� Dietlibc www.fefe.de/dietlibc
Another alternate library optimized for reduced size, supports

only static linking
� strip

Just running strip to remove unnecessary debugging and other
symbols can greatly reduce the size of a library or executable

���������	�
�����		��������������
���������
��	��������������
�����	��������������		�������
������������	�����������	�����������������

5Drop by www.timesys.com.

Small RFS Rules of Thumb

�If you run one application, this is a great
solution

�Minimal functionality!

Minuscule
No BusyBox (or very minimal) no

shared libraries
<1 MB

�Put effort into reducing what’s included in
uclibc and busybox.

�Write your own system initialization scripts

Tiny
Paired-down uclibc and BusyBox

1.5 - 2 MB

�Use the uClibc as your C library, recompile
applications as well

�Busybox for RFS
�Manually create device nodes

Small
uClibc and Busybox

2 - 2.5 MB

�Strip glibc libraries and remove locale data
�Use busybox to supply user-land RFS
programs

Minimal
Glibc and Busybox

6 - 10 MB

6Drop by www.timesys.com.

Minuscule File System: How is that possible?

�Static linking removes the need
for a C library
� Even a small shared library has a

lot of code that’s never called
� Duplicate code < unused code, so

you save space

�Change the default init
� Create your own file or binary

named init (initrc)
� Init=<your program here>

�Create all device nodes in
advance
� For almost all embedded systems,

the devices remain fixed
� Reduces memory requirements

and boot time

�Drawbacks
� If device has several programs,

the libraries + programs will
probably be smaller

� Not using init means a doing re-
spawn for your application and
custom start-up code, the kernel
does not take kindly to init
terminating

�Counter-point
� System considerably simpler
� Much greater control over start-up

process means better
performance

� Fewer resources necessary for
start-up

7Drop by www.timesys.com.

Beyond BusyBox

� BusyBox
provides a great starting
point for an embedded
system but there’s still a
wealth of packages for
embedded systems.

�Dropbear
ssh/scp implementation

�Boa/thhpd
Small & fast http servers

�Stupid-ftp
A small & simple ftp server

�Zebra
IP protocols: RFC 1771 RIP

�ACE/TAO
Corba on your device

8Drop by www.timesys.com.

Space Efficient File Systems

�Most use compression schemes that result in an even
smaller file system image

�Most are read-only
�Create RAM drives for temporary storage needs
�Use another partition for read\write file system

�Alternatives to ext3 or jffs2

�Bake-off, which produces the smallest RFS?
�Used host tools to create file system image for each
�Compare final size of each
�Smallest != Best. Fast, small, low-memory: pick two.

9Drop by www.timesys.com.

Drive By: Space Efficient File Systems

�Read-only
�Slower access time due to decompression
overhead

squashfs
�Uid/gid stored only as numbers
�Support outside of 2.6 spotty
�Will grow unbounded, until exhausting memory

�Uid/gid stored only as numbers
�Support outside of 2.6 spotty
�Will grow unbounded, until exhausting
memory

initramfs
�Well supported for 2.6, low kernel overhead
�Records all meta-data, space efficient
�Easy to create file system

�No last access, uid/gid information stored
�Read-only
�No compression

romfs
�Simple and fast
�Driver does not need overhead of compression
library
�Fast access times

�Files < 16MB
�Maximum filesystem size 256 MB
�Does not store timestamps
�Write-only

cramfs
�Compresses files to save space
�Meta-data not compressed, but stored efficiently
�Performance hit when reading data, as it must be
decompressed

14Drop by www.timesys.com.

Tiny RFS: Bake-off results

�Starting size: 2.1 MB

�All solutions produce
“small” root file
systems

� squashfs produced
the smallest RFS size,
but has a little more
overhead in the kernel

�Depending on the
nature of your file
system, your results
may vary

770

951

1611

700

0 500 1000 1500 2000

fil
es

ys
te

m

cramfs initramfs romfs squashfs

15Drop by www.timesys.com.

Other Suggestions

�Use RAM based file systems for temporary data
�No need to reserve parts of flash for data you don’t care

about
�You can use RAM disks or tmpfs file systems

�Pre-create as much as possible
�Create directories and files in advance
�Create device nodes in advance
�Remember, shell scripts require a shell, and that takes

space.

�Test your file system using chroot
�While not perfect, you can test much faster this way

����������	
����
������
����������
��������������
����������	����	��������������	���������������
����
�	
���� �
 ���� �����������	
����!�����"����!����

16Drop by www.timesys.com.

Making the Kernel Smaller

�Kernel, in default state, targeted for desktop systems
�Device flexibility
�Start-up time not that important (can afford the time

delays related to device discovery)
�Robust networking support
�Support for a wide variety of input devices
�System doesn’t know what it could be running

�Embedded environment
�Fixed set of peripherals (most of the time)
�Fixed purpose
�Start-up time very important

17Drop by www.timesys.com.

Minimizing the kernel

�Remove debugging information & kernel hacking

�Don’t load modules
�Compile them directly into the kernel
�Can remove support for modules (bonus: the RFS

doesn’t need insmod either)

�Other low-hanging fruit
�Drop video support
�Chances are you won’t need support for IDE
�Compile with -Os (makes debugging harder)
�Remove support for NFS file systems�	����	��������������������������� �!"���#���$

��������������%�������&
	����'��	�������	�����(�)�����

18Drop by www.timesys.com.

Breaking News: Linux-Tiny Patches

�“Seems not to have been maintained after kernel
version 2.6.14” http://tree.celinuxforum.org/CelfPubWiki/LinuxTiny

�Still available at CELF for the 2.6.16.19 kernel
�Or at http://www.selenic.com/tiny/
�The patches are (thoughtfully) separated by specific

functionality, or in one large patch
� Interested users can get these patches to apply on their

kernel. Considering the size and content, this shouldn’t
be too hard…

19Drop by www.timesys.com.

Kernel Minimization (continued)

� Don’t support dhcp\bootp if you’re not using your network
device frequently (or at all in production)

� Remove sysctl if you don’t need to dynamically change
your kernel configuration

� Remove ext2/3 support of you’re not using this file system,
most configurations include this by default

� Virtual memory, if the idea of a swap drive in RAM isn’t
funny enough, consider it on a flash device.

� Reduce the kernel log ring buffer (default is 16K)

� Drop hot-plug support and Kernel User Space Events

20Drop by www.timesys.com.

What was removed

�Drop
all file systems except the one's you're
using! Ext3 support is 133K alone! If you
have a ram disk, using ext2 is fine.

�CONFIG_SWAP (30K)
Swap devices

�CONFIG_SYSCTL (23k)
Change kernel parameters on the fly

�CONFIG_LOG_BUF_SHIFT
Reduce to 4K

�CONFIG_HOTPLUG (10K)
Support for PCMCIA devices

�CONFIG_KOBJECT_UEVENT (3.5k)
Kernel object notification to user space
programs, related to CONFIG_HOTPLUG.

�CONFIG_EMBEDDED
Enable this, but under the options, disable
CONFIG_KALLSYMS

�CONFIG_MODULES
Support for modules

�CONFIG_BINFMT_AOUT (7K)
Support only ELF executables (the
standard since 1995)

�CONFIG_MD (45K)
Raid devices? Probably not for you. Raid
+ jffs2 == funny!

�CONFIG_DEBUG_KERNEL (not sure)
When deployed, this information can be
used.

21Drop by www.timesys.com.

My smallest kernel + root file system

Kernel (bugboot image) 2,100 KB
Root File System 700 KB

Total 2,800 KB

�	������ �����!��������������!������
���
�	�����������
��!���!�#�����$�
! ��%��!���
���������!����!
����������	�����	�����������

22Drop by www.timesys.com.

Lots of URLs in today’s presentation

� Busybox
http://busybox.net

� uClibc
http://uclibc.org

� Dietlibc
http://www.fefe.de/dietlibc

� Cramfs
http://sourceforge.net/projects/cramfs/

� romfs
http://sourceforge.net/projects/romfs/

� initramfs
http://packages.debian.org/unstable/utils/initramfs-tools

� squashfs
http://sourceforge.net/projects/squashfs

23Drop by www.timesys.com.

Q & A

Thank you for attending!

