
 1

FFSB and IOzone

Keshava Munegowda , Sourav Poddar
Texas Instruments (India) Pvt Ltd

Bangalore.

Dr. G T Raju
Professor and Head, Computer Science and Engineering Department,
R N S Institute of Technology, Bangalore, India.

File system Benchmarking Tools, Features and Internals

Embedded Linux Conference
November 5-7, 2012

Barcelona, Spain Linux Development Center

 2

Agenda

 FFSB overview
 FFSB profile files
 FFSB internals
 IOzone overview
 IOzone internals
 Porting of FFSB to ARM based platforms
 Porting of IOzone to ARM based platforms
 Example Results
 FFSB v/s Iozone Summary
 References

Linux Development Center

FFSB
and

IOzone

 3

FFSB overview

Linux Development Center

 Flexible File System Benchmarking tool
 Uses the Pthreads for the performance

benchmarking
 Uses profile files as input

– Example: ffsb <profile_file>

 Limits the maximum time of benchmarking
 Multiple file systems to benchmark
 Flexible probablities for read, write, append,

delete etc operations

FFSB
and

IOzone

 4

Profile files of FFSB

 Input to FFSB tool to specify
– Global options
– File systems

 Options per file system

– Thread Groups
 Options per Thread group

Linux Development Center

FFSB
and

IOzone

 5

Global Options of Profile files

Linux Development Center

 time
– Duration of Benchmarking operations

 Directio
– File open, read and writes are made with the option

“O_DIRECT”.
– No Buffers are used by kernel; direct device read/writes are

performed.
 Alignio

– All buffered opertions are aligned to 4K boundaries
 callout

– Specifies an external command to be executed before the
Benchmarking starts.

FFSB
and

IOzone

 6

File system options of profile files

Linux Development Center

FFSB
and

IOzone

 location
– Mounted directory path (/media/..) of file system

 num_files
– Number of files (start files) to exist before the benchmarking

 num_dirs
– Number of directories to exist before the benchmarking

 max_filesize
– Maximum file size of the start files

 min_filesize
– Minimum file size of the start files

 create_blocksize
– Size of the data block to be used to while writing a data to start files

– Default size is 4K

 Reuse
– Reuse if files are already existing

 7

File system options of profile files cont....

 agefs

– Aging of the file system is enabled

– One threadgroup description should follow this agefs option
 For example

agefs=1

[threadgroup0]

num_threads=1

write_blocksize=4096

write_size=64m

write_weight=1

[end0]

 desired_util

– File system utilization factor to determine the file system aging

– This value is (Number of used blocks/ Total number of blocks of file system)
 For example, desired_util=0.02 means age the file system until 20% is full

 age_blocksize

– Block size for the file creation

– Default size is 4K

FFSB
and

IOzone

Linux Development Center

 8

Thread group options of profile files

FFSB
and

IOzone

 Bindfs
– specifies the file system mount point on which this thread group operate

 num_threads
– Number of threads to execute for the benchmarking

 write_size
– Amount of data written to the file in every iteration of write performance benchmarking

 read_size
– Amount of data read from the file in every iteration of read performance benchmarking

 write_blocksize
– Block size in bytes used while writing data to benchmark file

 read_blocksize
– Block size in bytes used while reading data to benchmark file

 write_weight, read_weight, append_weight, delete_weight
– Probability weight values of the file system operations

 op_delay
– Delay between each operation

Linux Development Center

 9

FFSB internals version: ffsb-6.0-rc2

Linux Development Center

FFSB
and

IOzone

Start Files/directories creation
and Ageing

Sync() called by ffsb_sync

Invoke “callout”

Create “N “ thread groups

Record “start time”

Wait for “N” thread groups to complete

Sync() called by ffsb_sync

Record “End time”

Diff time = end time – start time

Read throughput = read_bytes/diff time
Write throughput = write_bytes/ diff time

For (i=0;i < number of file systems; ++) /* starts with “main.c” file */
Thread [i] <- One thread per file system i

For (i=0;i < number of file systems; ++)
Wait for all fs thread[i] to complete

For each threadgroup
For (i=0;i < number of threads; ++)

Create Thread [i]
While (flag ==0)

 Sleep for 1 second
 If (time > “user input time”)

Flag = 1
End while
For (i=0;i < number of threads;; ++)

Wait for all thread[i] to complete
End of threadgroup

For each Thread[i]
 While (flag == 0)

Op = randomly select operation
The operation could be read, write, append,

Delete, createdir, etc
Update read_bytes and write_bytes

 End while
End of thread[i]

For each Thread[i]
Create start files/directories for each file system i

 Agethread = Create a thread
Agethread create the additional files to fill file system i
End of agethread

End of Thread[i]

 10

IOzone

Linux Development Center

FFSB
and

IOzone

 No profile files

 Options are provided along with IOzone command
– Example : iozone -a -I -n 64M -g 64M -r 4k -i 0 -i 1 -b <excel.file>

 a : Auto mode , receives the user input file sizes

 I : use Direct I/O

 n : minimum file size

 g: maximum file size

 r : read/write block size

 i <test number> : test numbers 0 – write/rewrite , 1- read/re-read

 Modes supports : Default mode, Auto mode, Througput test.

 No file system Ageing

 Guaranteed file system operation; No Random selection of opeartion

 No Execution time limitation

 Excel format output

 11

IOzone : Default mode

 Command:
– Iozone -b <excel.file>

 Performs read/re-read, write/re-write, fread/re-fread,
fwrite/re-fwrite etc with
– 512 KB size
– Record size : 4K

 User can specify the DIRECT_IO, record size too
 Input minumum/maximum file size are not considered.
 Always the fixed size : 512KB

FFSB
and

IOzone

Linux Development Center

 12

IOzone : Auto Mode

 Command:
– Iozone -a -n 4M -g 64M -r 4K -i 0 -i 1 -b <excel.file>
– a : Automode

 Automode can set minimum and maximum file
size

 Repeat the test from minimum size file to
maximum size file

FFSB
and

IOzone

Linux Development Center

 13

IOzone : Auto Mode Internals

 Function : auto_test() [file : iozone.c , version: 3.397]
 For (i= <min_file_size> ; i < Max_file_size>; i*=2) {

if (<r> (record size> defined)

perform_test(i, r); /* constant record size */

else

for (rec = 4; k<= i; k*2) {

 perform_test(i, rec) /* varying record size */

}

}

 The perform_test will be read, write, fread, fwrite, etc

FFSB
and

IOzone

Linux Development Center

 14

IOzone : Auto Mode Internals

Perform test example: write_perf_test [file: iozone.c]

fd = create file iozone.tmp /* default file name to use if “-f” option not used */
 /* DIRECT_IO can be flag will be set while creating a file */

nb = total size to write / record size

start time = record the time

for(i=0; i< nb; i++) {
write(fd, buffer, record size);

}

 if (“e” is supplied options of iozone) then
fsync(fd)

end time = record the time

diff time = end time – start time

write rate = total size to write / diff time



Linux Development Center

FFSB
and

IOzone

 15

IOzone: Throughput Test Mode

 Command:
– Iozone -T -t < value> -l <value> -u <value> -b <excel.file>
– T : use pthread

– If <-T> option is not provided, child process (fork()) will be used.

– l : Minimum number of threads/process
– u : Maximum number of threads/process
– t : number of threads/process

 If -t is provided, options l and u are ignored.

 Uses 512KB file size for write/read
 If <l> and <u> options provided , then

– Count = <u> - <l> +1 ; Count iterations performed
For (i=0, k= < l > ;i < count; i++, k++)

throughput test is performed with k threads /* function: throughput_test will be invoked*/

FFSB
and

IOzone

Linux Development Center

 16

IOzone: Throughput Test Mode internals

Function: throughput_test [file: iozone.c] {
1. start time = record time

2. for (i = 0; i< num_threads; i++) {
create thread[i] with the function thread_write_test

}

3. for (i = 0; i< num_threads; i++) {
wait for thread[i] to complete

}

4. end time = record time

5. diff time = end time – start time;

6. troughput = total bytes written by num_threads / diff time

7. print parent throughput

....

/* create threads for “read” and wait for them to complete, repeat steps 1 to 7 for read operation */

....

/* create threads for fwrite and wait for them to complete, repeat steps 1 to 7 for fwrite operation */

.....

......

}

FFSB
and

IOzone

Linux Development Center

 17

IOzone: Throughput Test internals

Function: thread_write_test (thread number) [file: iozone.c]{

fd = create file iozone.DUMMY. < thread number>
 /* default file name to use if “-f” option not used */

 /* DIRECT_IO can be flag will be set while creating a file */

nb = 512 KB / record size

start time = record the time

for(i=0; i< nb; i++) {
write(fd, buffer, record size);

}

 if (“e” is supplied options of iozone) then
fysnc(fd)

end time = record the time

diff time = end time – start time

write rate = total size to write / diff time

 print the “Write rate/throuput”

}

FFSB
and

IOzone

Linux Development Center

 18

IOzone : Cross Compiling for ARM based SOC - OMAP

Copy the ARM libraries to BusyBox library directory
– Sudo cp -rf * <...>/arm-2010q1/arm-none-linux-gnueabi/libc/lib/* <...>/busybox/lib

Modify {CC} and {GCC} values in the Makefile of Iozone source
directory
– CC = arm-none-linux-gnueabi-gcc
– GCC = arm-none-linux-gnueabi-gcc

 These compiler strings should indicate the ARM cross compiler

Run “make linux” command in the iozone source folder
– The iozone source folder will be generally <..>/iozone_408/src/current

Copy the generated “iozone” executable file to busybox file
system

FFSB
and

IOzone

Linux Development Center

 19

FFSB : Cross Compiling for ARM based SOC - OMAP

Copy the ARM libraries to BusyBox library directory
– Sudo cp -rf * <...>/arm-2010q1/arm-none-linux-gnueabi/libc/lib/* <...>/busybox/lib

Modify {CC} and {GCC} values in the Makefile of FFSB source
directory
– CC = arm-none-linux-gnueabi-gcc
– GCC = arm-none-linux-gnueabi-gcc

 These compiler strings should indicate the ARM cross compiler

Run “make” command in the FFSB source folder
– The FFSB source folder will be generally <..>/ffsb-6.0-rc2/

Copy the generated “ffsb” executable file to busybox file system

FFSB
and

IOzone

Linux Development Center

 20

Example Results of IOzone and
FFSB

IOzone FFSB

Read 3.8GB/sec 3.9 GB/sec

Write 45.5MB/sec 5.5MB/sec

Read
[DIRECT_IO]

7.3MB/sec 6.88MB/sec

write [DIRECT_IO] 497KB/sec 503KB/sec

Write [with fsync()] 5.7 MB/sec 6MB/sec

Test Setup details

System Dell latitude with
Intel core i7

RAM 4GB

Linux version 3.2

Storage device 4 GB Transcend
thumb drive

File system used in
storage device

FAT32

FFSB version 6.0.rc2

IOzone version 3.397

File size 64MB

Write/read block size 4K

Performance of Buffer write of IOzone is Higher than buffered write of FFSB

One of the reasons could be the FFSB uses sync() after the write opeation and before
collecting the time stamp; the ffsb_sync()[file: main.c] function calles the sync() system
call.

In FFSB, write sync and write gives almost same performance

The IOzone does not invoke the sync() before collecting the time stamp after the write
operation. Function write_perf_test [file: iozone.c] does not use sync() function call.

Usage of sync() function in write_perf_test , yields the average write performance of 10
MB/sec with IOzone tool i.e, Reduced from 45MB/sec to 10 MB/sec.

FFSB
and

IOzone

Linux Development Center

 21

FFSB profile file example

 Example 1 and Example 2
uses the same number of
threads

 Example 2 has the higher
read weights than write
weights

 The read performance of the
example2 is lower than
example1.

 Using a seperate/ dedicated
threads for read and write
operations gives the better
throughtput values.

 In Example 1, its observed
that a read thread reads more
data with in 200 seconds.

Example 1
time=200
directio=0
[filesystem0]

location=/media/4GB
num_files=1
num_dirs=1
max_filesize=64m
min_filesize=64m

[end0]
[threadgroup0]

num_threads=1
write_blocksize=4096
write_size=64m
write_weight=1
read_weight=0

[end0]
[threadgroup1]

num_threads=1
read_blocksize=4096
read_size=64m
write_weight=0
read_weight=1

[end1]

---------------- output -----------------------
Read Throughput: 3.86GB/sec
Write Throughput: 5.96MB/sec

Example 2
time=300
directio=0
[filesystem0]

location=/media/4GB
num_files=2
num_dirs=1
max_filesize=64m
min_filesize=64m

[end0]

[threadgroup0]
num_threads=2
write_blocksize=4096
write_size=64m
write_weight=1
read_blocksize=4096
read_size=64m
read_weight=2

[end0]

-------------------- output -------------------
Read Throughput: 13MB/sec
Write Throughput: 6.13MB/sec

FFSB
and

IOzone

Linux Development Center

 22

FFSB v/s IOzone

Feature FFSB IOzone

Execution Only Pthread Current process, child
process and pthreads
also

Benchmark
options/selectives

Profile files Options provided along
with command

directio yes yes

MS Execel format
output

no yes

File system operations
execution order

Random and based on
input weight order

Linear

File system Aging yes no

Execution time limit yes no

FFSB
and

IOzone

Linux Development Center

 23

References

 FFSB url: http://sourceforge.net/projects/ffsb/.
 Iozone url: http://www.iozone.org/.

Linux Development Center

FFSB
and

IOzone

 24

Questions

Queries and Feedback
– Keshava Munegowda

 keshava_mgowda@ti.com
 keshava.gowda@gmail.com

– Sourav Poddar
 sourav.poddar@ti.com

Linux Development Center

FFSB
and

IOzone

mailto:keshava.gowda@gmail.com

