
1

Introduction to Linux,

for Embedded Engineers

Tutorial on Virtual Memory

Feb. 22, 2007

Tetsuyuki Kobayashi

Aplix Corporation

[translated by ikoma]

2

Target Audience of this Presentation

• People who have been engaged in

projects on embedded devices, and

who are now using Linux as operating

system

3

Goals of this Presentation

• To understand the mechanism of virtual

memory in Linux, and to make use of it for

the current project

– Although programs work without

understanding the mechanism, it is important

to understand the mechanism to extract

sufficient performance

4

Basic Concepts, First of All

• Virtual ..., Logical ...
– Virtual addresses, logical devices, logical

sectors, virtual machines

– To handle as if it is ...

• Real ..., Physical ...
– Real addresses, physical devices, phisical

sectors

– Itself, as it is

5

Virtualization: As if ... but ...

• As if it is large, but it actually small

• As if it is flat, but it actually uneven

• As if there are many, but there is actually one

• As if exclusively usable, actually shared

Virtualization is magic to hide complexity or

individual depedency;

as it is magic, there is a trick

= Mapping between the real and the virtual

Translating so that it looks as if ...

6

Cost of Virtualization

• We do virtualize as its merits are

greater than its demerts, but

virtualization does not always mean

positive results

7

Phisical Memory and Virtual Memory

• Most of ordinary embedded device

projects so far have handled only physical

memory

• Recently, as the size of embedded

systems grow, PC-oriented OSes such as

Linux and WIndowsCE are getting widely

used; these operating systems provide

virtual memory systems

• This presentation explains Linux

8

Physical Memory

• Single memory space

• As each device is

implemented with different

addresses for ROM, RAM

and I/O, programmers

should code accordingly

ROM

RAM

I/O

I/O

I/O

9

Virtual Memory

• Merits
– User programs do not depned on actual memory map

(implementation address, implementation size) any
more

– Can use non-contiguous physical memory fragments
as contiguous virtual memory

– Memory protection: Can prevent irrelevant memory
from being destroyed by bugs

• Introducing new concepts
– Address translation

– Multiple memory spaces

– Demand paging

10

Conceptual Schema of Virtual Memory

Source: Wikipedia

 Swapping Area

Physical Memory

Space

Virtual Address Space

11

Address Translation

ROM

RAM

I/O

I/O

I/O

address x

Physical Addr Space Virtual Add Space

address y

MMU

Linux kernel

controls

12

Virtual Memory is only in CPU

ROM

RAM

I/O

I/O

I/O

address x

Physical Addr Space
Virtual Addr Space

address y

MMU

CPU

Only physical addresses come out of CPU onto address bus.

Virtual addresses can not be observed with the logic analyzer

13

User Program Handles

only Virtual Addresses

ROM

RAM

I/O

I/O

I/O

address x

Physical Addr Space
Virtual Addr Space

address y

MMU

CPU

Physical addresses are handled only in kernel mode,

i.e. kernel itself and device drivers

14

Address Translation with MMU

Directory

Entry

Page Table

Entry

Physical Addr

0 11 12 21 31 22

Page Directory

Page Table

Page

Page Offset Page Table Index Directory Index Virtual Addr

Page Directory

Base Register

No page! ... page fault

15

TLB

• Translation Lookaside Buffers

• Something like hashtable getting a physical

address by a using virtual address as a key

• In most address translation, page is found in

TLB, so there is no need to access page

directory or page table

...

Virtual Address Pages Physical Address Pages

16

Multiple Memory Spaces

ROM

I/O

I/O

Physical Addr Space
Independent virtual memory spaces per process

RAM

17

Demand Paging

• Mapped per page

– Page size is usually 4Kbytes

• Two phase execution

1. Virtual memory is allocated(mmap); just

registered in management table

2. At actual access, physical momory is

allocated for the page

As no physcal page is allocated unless the page is accessed

Virtual memory size >= Actually required physical memory size

18

Example of Demand Paging Behavior

Virtual Addr Space Physical Addr Space

read access

No

Corresponding

Physical page!

Page fault occurs;

Transits into kernel mode

(1)

19

Example of Demand Paging

Behavior (cont.)

DMA Transfer

Mapping

Virtual Addr Space Physical Addr Space

Kernel loads the data and maps physical address

(2)

20

Example of Demand Paging

Behavior (cont.)

Virtual Addr. Space Physical Addr Space

Return to user mode;

User program can read the data as if nothing happened

(but time has elapsed actually)

(3)

data

21

Page Cache

Physical Addr Space

Data read from disk are kept on memory as far as space allows.

Access tends to be sequential, so several pages are read

at a time in advance;

Thus disk access does not occur every time in (2)

22

Page Out

If no physical memory is available in (2), a page assumed to be least

used is released. If the contents of this page is not modified, it is just

discarded; otherwise, the page is swapped out onto swap device.

Virtual Addr Space Physicial Addr Space

swap device

Many of embedded Linux does not have

a swap device
a page to be

swapped out

23

Page Out (cont.)

A requested page is allocated using area of a page released.

This “juggling” enables to larger size of virtual memory than

physical memory size actually installed

DMA Transfer

Virtual Addr Space Physical Addr Space

no page

24

Page Sharing

Virtual Addr Space

Physical Addr Space

Process A

Process B

The same pages of a same file will be

shared among more than one processes;

for both read-only pages and writable pages

25

Copy on Write

Process A

Process B

write

access

read only

Page Fault

Occurs

r/w private

If write operation occurs on writable

and private page...

26

Copy on Write (cont.)

Process A

Process B

write

access

read only

Kernel copies the page and changes

the page status to read/write

read/write

copy

27

Memory Spaces of Processes

0x00000000

0xffffffff

TASK_SIZE

process A B C

... user space

kernel

space

Kernel space is shared among processes;

kernel space is not allowed to

read/write/execute in user mode;

user memory spaces are switched

when processes switched

About 3 GB user memory space per process

TASK_SIZE is 0xc0000000 for i386;

0xbf000000 for ARM

28

Example of Memory Space

of a User Process

00101000-0011a000 r-xp 00000000 fd:00 15172739 /lib/ld-2.4.so

0011a000-0011b000 r-xp 00018000 fd:00 15172739 /lib/ld-2.4.so

0011b000-0011c000 rwxp 00019000 fd:00 15172739 /lib/ld-2.4.so

0011e000-0024a000 r-xp 00000000 fd:00 15172740 /lib/libc-2.4.so

0024a000-0024d000 r-xp 0012b000 fd:00 15172740 /lib/libc-2.4.so

0024d000-0024e000 rwxp 0012e000 fd:00 15172740 /lib/libc-2.4.so

0024e000-00251000 rwxp 0024e000 00:00 0

08048000-08049000 r-xp 00000000 fd:00 11666681 /home/koba/lab/loop/a.out

08049000-0804a000 rw-p 00000000 fd:00 11666681 /home/koba/lab/loop/a.out

b7fef000-b7ff1000 rw-p b7fef000 00:00 0

b7fff000-b8000000 rw-p b7fff000 00:00 0

bffeb000-c0000000 rw-p bffeb000 00:00 0 [stack]

cat /proc/<PROCESS_ID>/maps

file name inode

device

major:minor

Address Range file offset

r: read

w: write

x: execute

s: shared

p: private (copy on write)

29

Example of Memory Space of a

User Process (Detail)

0011e000-0024a000 r-xp 00000000 fd:00 15172740 /lib/libc-2.4.so

Size: 1200 kB

Rss: 136 kB

Shared_Clean: 136 kB

Shared_Dirty: 0 kB

Private_Clean: 0 kB

Private_Dirty: 0 kB

0024a000-0024d000 r-xp 0012b000 fd:00 15172740 /lib/libc-2.4.so

Size: 12 kB

Rss: 8 kB

Shared_Clean: 0 kB

Shared_Dirty: 0 kB

Private_Clean: 0 kB

Private_Dirty: 8 kB

0024d000-0024e000 rwxp 0012e000 fd:00 15172740 /lib/libc-2.4.so

Size: 4 kB

Rss: 4 kB

Shared_Clean: 0 kB

Shared_Dirty: 0 kB

Private_Clean: 0 kB

Private_Dirty: 4 kB

cat /proc/<PROCESS_ID>/smaps

RSS = Physical Memory Size

30

mmap System Call

• Map/Unmap files or devices onto memory

• Argument prot
– PROT_NONE, or OR operation of PROT_EXEC,

PROT_READ, and PROT_WRITE

• Argument flags
– MAP_FIXED, MAP_SHARED, MAP_PRIVATE,

MAP_ANONYMOUS, ...

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags,

 int fd, off_t offset);

int munmap(void *start, sizt_t length);

31

mmap tips

• Unless specified as MAP_FIXED, kernel

searches available pages

• If MAP_FIXED is specified and it overlaps

existing pages, the pages are mumpapped

internally

– Thus this option is usually not used

• File offset must be multiple of page size

• Addresses and sizes of mmap and

munmap need not be identical

32

Usage of mmap (1)

• As substitute of malloc for large size

– No data copy, such as compaction, occurs

– Unlike malloc/free, addr and size at munmap
can be different than those at mmap

• It is possible to allocate a large chunk with a
single mmap, and to release piecemeal with
multiple munmaps

– In malloc of glibc implementation, mmap is
called for a certain size or larger

• DEFAULT_MMAP_THRESHOLD = (128*1024)

33

Usage of mmap (2)

• Fast file access
– In system calls read and write, data is

internally buffered in physical pages; from
there data is copied to array specified by user

– Using mmap enables to access page directly,
thus number data copies can be reduced

– java.nio.MappedByteBuffer in Java1.4

34

Usage of mmap (3)

• Shared memory among processes

– Map the same file as readable/writable and

shared from more than one processes

– IPC shared memory system calls (shmget,

shmat, ...) does above internally

35

Usage of mmap (4)

• Access to physical memory, I/O ports

– By mapping device file /dev/mem, it becomes

possible to read/write physical memory space

in user mode

– To access /dev/mem, root privilege is required

36

Summary

• Virtual memory usage and physical
memory usage are not same. Physical one
matters in practice

• Be careful when overhead of virtual
memory occurs.
– TLB miss

– Page fault

• Make use of system call mmap

37

References

• Linux kernel source code
http://www.kernel.org/

• GNU C library source code
http://www.gnu.org/software/libc/

• “Understanding the Linux Kernel (2nd Edition)”
by Daniel P. Bovet (O’Reilly) [Japanese translation; 3rd
Edition available in English]

• “Linux kernel 2.6 Kaidokushitsu”, by Hirokazu Takahashi
et. al. (SoftBank Creative) [in Japanese]

• Linux man command

• And other search results on web

http://www.kernel.org/

38

One more thing: hot topics

• From CELF BootTimeResources

– KernelXIP

– ApplicationXIP

– (DataReadInPlace)

• From CELF MemoryManagementResouces

– Huge/large/superpages

– Page cache compression

