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Target Audience of this Presentation 

• People who have been engaged in 

projects on embedded devices, and 

who are now using Linux as operating 

system 
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Goals of this Presentation 

• To understand the mechanism of virtual 

memory in Linux, and to make use of it for 

the current project 

– Although programs work without 

understanding the mechanism, it is important 

to understand the mechanism to extract 

sufficient performance 
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Basic Concepts, First of All 

• Virtual ..., Logical ... 
– Virtual addresses, logical devices, logical 

sectors, virtual machines 

– To handle as if it is ... 

• Real ..., Physical ... 
– Real addresses, physical devices, phisical 

sectors 

– Itself, as it is 
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Virtualization: As if ... but ... 

• As if it is large, but it actually small 

• As if it is flat, but it actually uneven 

• As if there are many, but there is actually one 

• As if exclusively usable, actually shared 

Virtualization is magic to hide complexity or 

individual depedency; 

as it is magic, there is a trick 

= Mapping between the real and the virtual 

Translating so that it looks as if ... 
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Cost of Virtualization 

• We do virtualize as its merits are 

greater than its demerts, but 

virtualization does not always mean 

positive results 
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Phisical Memory and Virtual Memory 

• Most of ordinary embedded device 

projects so far have handled only physical 

memory 

• Recently, as the size of embedded 

systems grow, PC-oriented OSes such as 

Linux and WIndowsCE are getting widely 

used; these operating systems provide 

virtual memory systems 

• This presentation explains Linux 
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Physical Memory 

• Single memory space 

• As each device is 

implemented with different 

addresses for ROM, RAM 

and I/O, programmers 

should code accordingly 
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Virtual Memory 

• Merits 
– User programs do not depned on actual memory map 

(implementation address, implementation size) any 
more 

– Can use non-contiguous physical memory fragments 
as contiguous virtual memory  

– Memory protection: Can prevent irrelevant memory 
from being destroyed by bugs 

• Introducing new concepts 
– Address translation 

– Multiple memory spaces 

– Demand paging 
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Conceptual Schema of Virtual Memory 

Source: Wikipedia 

 Swapping Area 

Physical Memory 

Space 

Virtual Address Space 
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Address Translation 
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controls 
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Virtual Memory is only in CPU 

ROM 

RAM 

I/O 

I/O 

I/O 

address x 

Physical Addr Space 
Virtual Addr Space 

address y 

MMU 

CPU 

Only physical addresses come out of CPU onto address bus. 

Virtual addresses can not be observed with the logic analyzer 
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User Program Handles 

only Virtual Addresses 

ROM 

RAM 

I/O 

I/O 

I/O 

address x 

Physical Addr Space 
Virtual Addr Space 

address y 

MMU 

CPU 

Physical addresses are handled only in kernel mode, 

i.e. kernel itself and device drivers 



14 

Address Translation with MMU 

Directory 

Entry 

Page Table 

Entry 

Physical Addr 
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Page Directory 
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Page 

Page Offset Page Table Index Directory Index Virtual Addr 

Page Directory 

Base Register 

No page! ... page fault 
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TLB 

• Translation Lookaside Buffers 

• Something like hashtable getting a physical 

address by a using virtual address as a key 

• In most address translation, page is found in 

TLB, so there is no need to access page 

directory or page table 

 

... 

Virtual Address Pages  Physical Address Pages 
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Multiple Memory Spaces 

ROM 

I/O 

I/O 

Physical Addr Space 
Independent virtual memory spaces per process 

RAM 
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Demand Paging 

• Mapped per page 

– Page size is usually 4Kbytes 

• Two phase execution 

1. Virtual memory is allocated(mmap); just 

registered in management table 

2. At actual access, physical momory is 

allocated for the page 

 

 
 

 

As no physcal page is allocated unless the page is accessed 

Virtual memory size >= Actually required physical memory size 
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Example of Demand Paging Behavior 

Virtual Addr Space Physical Addr Space 

read access 

No 

Corresponding 

Physical page! 

Page fault occurs; 

Transits into kernel mode 

(1) 
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Example of Demand Paging 

Behavior (cont.) 

DMA Transfer 

Mapping 

Virtual Addr Space Physical Addr Space 

Kernel loads the data and maps physical address 

(2) 
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Example of Demand Paging 

Behavior (cont.) 

Virtual Addr. Space Physical Addr Space 

Return to user mode; 

User program can read the data as if nothing happened 

(but time has elapsed actually) 

(3) 

data 
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Page Cache 

Physical Addr Space 

Data read from disk are kept on memory as far as space allows. 

Access tends to be sequential, so several pages are read 

at a time in advance; 

Thus disk access does not occur every time in (2) 
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Page Out 

If no physical memory is available in (2), a page assumed to be least 

used is released. If the contents of this page is not modified, it is just 

discarded; otherwise, the page is swapped out onto swap device. 

Virtual Addr Space Physicial Addr Space 

swap device 

Many of embedded Linux does not have 

a swap device 
a page to be 

swapped out 
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Page Out (cont.) 

A requested page is allocated using area of a page released.  

This “juggling” enables to larger size of virtual memory than  

physical memory size actually installed 

DMA Transfer 

Virtual Addr Space Physical Addr Space 

no page 
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Page Sharing 

Virtual Addr Space 

Physical Addr Space 

Process A 

Process B 

The same pages of a same file will be 

shared among more than one processes; 

for both read-only pages and writable pages 
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Copy on Write 

Process A 

Process B 

write 

access 

read only 

Page Fault 

Occurs 

r/w private 

If write operation occurs on writable 

and private page... 
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Copy on Write (cont.) 

Process A 

Process B 

write 

access 

read only 

Kernel copies the page and changes 

the page status to read/write 

read/write 

copy 
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Memory Spaces of Processes 

0x00000000 

0xffffffff 

TASK_SIZE 

process A B C 

... user space 

kernel  

space 

Kernel space is shared among processes; 

kernel space is not allowed to 

read/write/execute in user mode; 

user memory spaces are switched 

when processes switched 

About 3 GB user memory space per process 

TASK_SIZE is 0xc0000000 for i386; 

0xbf000000 for ARM 
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Example of Memory Space 

of a User Process 

00101000-0011a000 r-xp 00000000 fd:00 15172739   /lib/ld-2.4.so 

0011a000-0011b000 r-xp 00018000 fd:00 15172739   /lib/ld-2.4.so 

0011b000-0011c000 rwxp 00019000 fd:00 15172739   /lib/ld-2.4.so 

0011e000-0024a000 r-xp 00000000 fd:00 15172740   /lib/libc-2.4.so 

0024a000-0024d000 r-xp 0012b000 fd:00 15172740   /lib/libc-2.4.so 

0024d000-0024e000 rwxp 0012e000 fd:00 15172740   /lib/libc-2.4.so 

0024e000-00251000 rwxp 0024e000 00:00 0  

08048000-08049000 r-xp 00000000 fd:00 11666681   /home/koba/lab/loop/a.out 

08049000-0804a000 rw-p 00000000 fd:00 11666681   /home/koba/lab/loop/a.out 

b7fef000-b7ff1000 rw-p b7fef000 00:00 0  

b7fff000-b8000000 rw-p b7fff000 00:00 0  

bffeb000-c0000000 rw-p bffeb000 00:00 0          [stack] 

 

cat /proc/<PROCESS_ID>/maps 

file name inode 

device 

major:minor 

Address Range file offset 

r: read 

w: write 

x: execute 

s: shared 

p: private (copy on write) 
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Example of Memory Space of a 

User Process (Detail) 

      .... 

0011e000-0024a000 r-xp 00000000 fd:00 15172740   /lib/libc-2.4.so 

Size:              1200 kB 

Rss:                136 kB 

Shared_Clean:       136 kB 

Shared_Dirty:         0 kB 

Private_Clean:        0 kB 

Private_Dirty:        0 kB 

0024a000-0024d000 r-xp 0012b000 fd:00 15172740   /lib/libc-2.4.so 

Size:                12 kB 

Rss:                  8 kB 

Shared_Clean:         0 kB 

Shared_Dirty:         0 kB 

Private_Clean:        0 kB 

Private_Dirty:        8 kB 

0024d000-0024e000 rwxp 0012e000 fd:00 15172740   /lib/libc-2.4.so 

Size:                 4 kB 

Rss:                  4 kB 

Shared_Clean:         0 kB 

Shared_Dirty:         0 kB 

Private_Clean:        0 kB 

Private_Dirty:        4 kB 

      .... 

cat /proc/<PROCESS_ID>/smaps 

RSS = Physical Memory Size 
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mmap System Call 

• Map/Unmap files or devices onto memory 

• Argument prot 
– PROT_NONE, or OR operation of PROT_EXEC, 

PROT_READ, and PROT_WRITE 

• Argument flags 
– MAP_FIXED, MAP_SHARED, MAP_PRIVATE,  

MAP_ANONYMOUS, ... 

#include <sys/mman.h> 

 

void *mmap(void *start, size_t length, int prot, int flags, 

 int fd, off_t offset); 

 

int munmap(void *start, sizt_t length); 
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mmap tips 

• Unless specified as MAP_FIXED, kernel 

searches available pages 

• If MAP_FIXED is specified and it overlaps 

existing pages, the pages are mumpapped 

internally 

– Thus this option is usually not used 

• File offset must be multiple of page size 

• Addresses and sizes of mmap and 

munmap need not be identical 
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Usage of mmap (1) 

• As substitute of malloc for large size 

– No data copy, such as compaction, occurs 

– Unlike malloc/free, addr and size at munmap 
can be different than those at mmap 

• It is possible to allocate a large chunk with a 
single mmap, and to release piecemeal with 
multiple munmaps 

– In malloc of glibc implementation, mmap is 
called for a certain size or larger 

• DEFAULT_MMAP_THRESHOLD = (128*1024) 
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Usage of mmap (2) 

• Fast file access 
– In system calls read and write, data is 

internally buffered in physical pages; from 
there data is copied to array specified by user 

– Using mmap enables to access page directly, 
thus number data copies can be reduced 

– java.nio.MappedByteBuffer in Java1.4 
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Usage of mmap (3) 

• Shared memory among processes 

– Map the same file as readable/writable and 

shared from more than one processes  

– IPC shared memory system calls (shmget, 

shmat, ...) does above internally 
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Usage of mmap (4) 

• Access to physical memory, I/O ports 

– By mapping device file /dev/mem, it becomes 

possible to read/write physical memory space 

in user mode 

– To access /dev/mem, root privilege is required 
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Summary 

• Virtual memory usage and physical 
memory usage are not same. Physical one 
matters in practice 

• Be careful when overhead of virtual 
memory occurs. 
– TLB miss 

– Page fault 

• Make use of system call mmap 
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One more thing: hot topics 

• From CELF BootTimeResources 

– KernelXIP 

– ApplicationXIP 

– (DataReadInPlace) 

• From CELF MemoryManagementResouces 

– Huge/large/superpages 

– Page cache compression 


