
Corporate Technology

Approaches to Ultra Long-Term
System Maintenance

Embedded Linux Conference Europe 2016

Prof. Dr. Wolfgang Mauerer
Siemens AG, Corporate Research and Technologies
Smart Embedded Systems
Corporate Competence Centre Embedded Linux

Copyright c© 2016, Siemens AG. All rights reserved.

Page 1 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Overview

1 Introduction

2 Aspects of Long-Term Maintenance
Architectural Characteristics
Threats and Risks

3 Technical Aspects
Payload Software
Developing, Building and Testing
In-Field Strategy

4 Backporting & Processes
Backporting: Conceptual and Technical Issues

Page 2 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Outline

1 Introduction

2 Aspects of Long-Term Maintenance
Architectural Characteristics
Threats and Risks

3 Technical Aspects
Payload Software
Developing, Building and Testing
In-Field Strategy

4 Backporting & Processes
Backporting: Conceptual and Technical Issues

Page 3 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Introduction 0

Disclaimer

Many statements: Extremely obvious
Realisation: Quite remote for many problematic appliances
Quantification: Astonishingly hard. . .

Page 4 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Introduction I

Consumer Electronics

Mobile Phones, Notebooks,
Tablets, . . .
Entertainment systems
(Radio, TV, DVD/Blue
Ray, . . .)
Ovens, Washing Machines,
Home Control/Automation

Industrial Systems

Medical devices
Computed tomography,
X-Ray Imaging,
Ultrasound, . . .

Infrastructure
Gas, Power, Water supply
Powerstations and
transformers
Traffic lights, park space
management

Mobility
Planes, trains,
automobiles, mars rovers,
space stations

. . .
Page 5 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Page 6 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Introduction II

Fundamental questions

Is long-term maintenance reasonable/doable?
System architecture for LTM?

Page 7 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Innovation Cycles I

Lifespans

Consumer devices: 2-5 years
Mobility: 5-20 years
Industrial: 10-30 years
Infrastructure: 30-80 years (and up!)

All domains: Linux, of course!

Long-life requirements not restricted to industrial appliances!
IoT, smart home, connected devices: Longevity requirements
pervade everyday devices
Short lifespans: Exception, not rule!

Page 8 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Innovation Cycles II

Page 9 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Innovation Cycle III

Fundamental Questions

Risks and benefits of
updates?
How to restrict updates to
(isolated) areas?
How to avoid updates?

Beyond components

Questions not addressed by
simply using LTS
components/distros
LTM: Architectural issue
LTM: Mindset issue

Some field observations/bogus assumptions

All components can be upgraded in-field 7

Updates fix more problems than they create 7

Upstream integration always reduces maintenance effort 7

Long-term component versions solve maintenance problems 7

Page 10 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Innovation Cycle III

Fundamental Questions

Risks and benefits of
updates?
How to restrict updates to
(isolated) areas?
How to avoid updates?

Beyond components

Questions not addressed by
simply using LTS
components/distros
LTM: Architectural issue
LTM: Mindset issue

Some field observations/bogus assumptions

All components can be upgraded in-field 7

Updates fix more problems than they create 7

Upstream integration always reduces maintenance effort 7

Long-term component versions solve maintenance problems 7

Page 10 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Outline

1 Introduction

2 Aspects of Long-Term Maintenance
Architectural Characteristics
Threats and Risks

3 Technical Aspects
Payload Software
Developing, Building and Testing
In-Field Strategy

4 Backporting & Processes
Backporting: Conceptual and Technical Issues

Page 11 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Appliance Architecture

Long-term maintenance vs. periodic re-building

Fixed (trusted) ↔ arbitrary payload software
Isolated ↔ universally accessible
Hardware stability ↔ variance
Fixed hardware ↔ extensibility (e.g., USB)
Verification and safety requirements
Cost sensitivity (core payload inside virtual environments?)

Software aspects

System base software
Payload software + architecture

Page 12 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Appliance Architecture

Long-term maintenance vs. periodic re-building

Fixed (trusted) ↔ arbitrary payload software
Isolated ↔ universally accessible
Hardware stability ↔ variance
Fixed hardware ↔ extensibility (e.g., USB)
Verification and safety requirements
Cost sensitivity (core payload inside virtual environments?)

Software aspects

System base software
Payload software + architecture

Page 12 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Appliance Architecture

Long-term maintenance vs. periodic re-building

Fixed (trusted) ↔ arbitrary payload software
Isolated ↔ universally accessible
Hardware stability ↔ variance
Fixed hardware ↔ extensibility (e.g., USB)
Verification and safety requirements
Cost sensitivity (core payload inside virtual environments?)

Software aspects

System base software: Little/no control
Payload software + architecture: Full control ⇒ LTM Focus!

Page 12 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Threats and Risks

What should LTM prevent in your case?

Device stops working
Device faults cannot be repaired/debugged
Device can be influenced from outside
Device does not meet changed expectations (functionality,
interoperability, . . .)

Response catalogue

Ignore issues (can be reasonable, on rare occasions)
Replace device (HW + SW; component)
Modify SW

Page 13 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Threats and Risks

What should LTM prevent in your case?

Device stops working
Device faults cannot be repaired/debugged
Device can be influenced from outside
Device does not meet changed expectations (functionality,
interoperability, . . .)

Response catalogue

Ignore issues (can be reasonable, on rare occasions)
Replace device (HW + SW; component)
Modify SW ⇐ case of interest

Page 13 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Outline

1 Introduction

2 Aspects of Long-Term Maintenance
Architectural Characteristics
Threats and Risks

3 Technical Aspects
Payload Software
Developing, Building and Testing
In-Field Strategy

4 Backporting & Processes
Backporting: Conceptual and Technical Issues

Page 14 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Payload Software

Software Engineering Considerations

Deliver maintainable software/architecture in the first place
Minimise cross-cutting issues
Harmonise technical and social organisation
Meaningful and reproducible history

Think three times before connecting systems to networks; then
think three more times
“Translator” with domain and (base component) community
knowledge
Make components (run-time) replaceable; prefer userland to
kernel

Page 15 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Payload Software

Software Engineering Considerations

Deliver maintainable software/architecture in the first place
Minimise cross-cutting issues
Harmonise technical and social organisation
Meaningful and reproducible history

Think three times before connecting systems to networks; then
think three more times
“Translator” with domain and (base component) community
knowledge
Make components (run-time) replaceable; prefer userland to
kernel

Page 15 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Development & Building I

Reproducible Builds

Produce binaries. . . 20 years after initial launch
Payload application + modifiable system components
Preserve base component binaries

Documentation of (seemingly trivial) details essential
Documentation availability (hardcopy is a serious alternative)
Avoid custom build systems

Page 16 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Development & Building I

Reproducible Builds

Produce binaries. . . 20 years after initial launch
Payload application + modifiable system components
Preserve base component binaries

Documentation of (seemingly trivial) details essential
Documentation availability (hardcopy is a serious alternative)
Avoid custom build systems

Source Code

Availability of source code + history (e.g., Bitkeeper. . .)
Component states + local provision of dependencies
Includes build infrastructure!

Page 16 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Development & Building I

Reproducible Builds

Produce binaries. . . 20 years after initial launch
Payload application + modifiable system components
Preserve base component binaries

Documentation of (seemingly trivial) details essential
Documentation availability (hardcopy is a serious alternative)
Avoid custom build systems

Tool Chain

Cross-Building: (subtle) dependencies!
Isolate build environment in VM (strict freeze!)
Bugs in ancient toolchain: Payload SW workarounds
Eclipse etc.: harder. . . 7

Page 16 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Development & Building II

Component Selection and Integration

Consider cost of libraries
Dynamically changing dependencies (version requirement specs
often unreliable)
Changes in components⇒ (silent) breakage in library

Distinguish between prototype and deliverable
Experiment with 17 machine learning algorithms
Deploy one (+ rewrite)

Page 17 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Development & Building II

Development prior to market release

Develop against latest mainline state (rebasing preferred)
Avoid vendor BSPs. Board support essential, not BSPs!

Only chance: Prior to purchasing 1.8× 1023 units

System changes: Upstream first policy
Avoid component modifications (socio-technical congruence)

Especially for features useless for upstream

Minimise divergence between upstream state and product at
release time

Page 18 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Development & Building III

Five Recommendations

1 Avoid complex development environments and generated code
2 Avoid web technologies
3 Use convenience libraries judiciously
4 Avoid integration/consolidation; delegate

communication/networking to separate entities
5 Document and automate excessively

Page 19 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Page 20 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Options for post-release development

Rolling Development

Continuous updates of
(selected) base components
Uncouple progress from
distribution (e.g., after eol)
Detect issues early,
re-invent distribution wheel

Distribution schedule

sudo apt-get upgrade

Requires support by
distribution!

Page 21 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Options for post-release development

System schedule

Update in appliance-specific
intervals (periodic or
irregular)
Combine disadvantages of
distribution and continuous
updates

Invariant base system

Don’t update base system
Payload application
development only
Requires (extremely) small
attack surface/virtualised
base system

Page 21 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Outline

1 Introduction

2 Aspects of Long-Term Maintenance
Architectural Characteristics
Threats and Risks

3 Technical Aspects
Payload Software
Developing, Building and Testing
In-Field Strategy

4 Backporting & Processes
Backporting: Conceptual and Technical Issues

Page 22 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Backporting I

Leverage LTSI kernel

LTSI support period: Comprehensive coverage
Post-LTSI: Backport only

Critical issues re/ attack surfaces
Orthogonal drivers/components
Feature not required during first 5 years⇒ unlikely required in next
decade(s)
Major change required (debugging, tracing etc.): Time for new
release. . .

Backport patch stack

Organise backports in proper orthogonal patch stack
Rebase! Living organism, not code dump

Page 23 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Backporting II: What and when to backport

1.) What to backport

Most upstream changes do
not require back-porting
Selection crucial
Selection criteria differ
depending on use case

Approaches

Keyword filtering (possible
for well-tended projects)
Content/file/path based
filtering (tremendous volume
reduction)
Manual review + long-term
expert involvement
necessary

Page 24 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Backporting II: What and when to backport

2.) When to backport

Proactively
After incidents/bugs

Simple criterion

incidents > # backport
regressions
Historical data: No
conclusive evidence
Expert assessment required

Page 24 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Backporting III

The human touch

Determine when no action is required
Notify users/customers

Page 25 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Backporting IV

Goal: Simplify patch selection for everyone

Fully automatic approach: unrealistic
Avoid duplicated manual efforts

Wishlist: Improvements

Maintenance classes (for patches), consistent across projects
Current schemes dating back to 70ies⇒ survey!

Applicability range (releases) annotation
Wide-spread use of automated approaches (backwards integration,
testing)

Extend use of semantic vs. text-based modifications

Page 26 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Summary

LTM best practices: Similar to proper (OSS-style) software
development
System and application architecture: crucial
LTM: not rocket science, but still more art than science –
quantitative data required!

Page 27 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

Thanks for your interest!

Page 28 11. Oct. 2016 W. Mauerer Siemens Corporate Technology

	Introduction
	Aspects of Long-Term Maintenance
	Architectural Characteristics
	Threats and Risks

	Technical Aspects
	Payload Software
	Developing, Building and Testing
	In-Field Strategy

	Backporting & Processes
	Backporting: Conceptual and Technical Issues

