The OpenAMP Project & its working groups:

Standardizing interactions between operating environments in a heterogeneous embedded system

Nathalie C. Chan King Choy, Open Source Program Manager, Xilinx
Stefano Stabellini, Principal Engineer, Xilinx
ELC North America 2020
Agenda

- What is OpenAMP trying to solve?
- OpenAMP Intro
- OpenAMP Project working groups
- Examples of OpenAMP in industry
- Learning more & getting involved
- Q/A
Acronyms

- AMP: Asymmetric Multi-Processing
- API: Application Programming Interface
- APU: Application Processor Unit
- EL: Execution Level
- FPGA: Field-Programmable Gate Array
- FuSa: Functional Safety
- HCI: Host Controller Interface
- IPC: Inter-Processor Communication
- LAVA: Linaro Automation & Validation Architecture
- MPSoC: Multi-Processing System-on-Chip
- OE: Operating Environment
- OS: Operating System
- PMU: Platform Management Unit
- RPU: Real-Time Processor Unit
- RTOS: Real-Time Operating System
- SEL: Secure Execution Level
- SoC: System-on-Chip
- TEE: Trusted Execution Environment
- TSC: Technical Steering Committee
- TZ: TrustZone
- WG: Working Group
What is OpenAMP trying to solve?
Heterogeneous Embedded System

- Multiple core clusters
 - A53, R5, PMU, MicroBlaze

- Multiple Execution Levels (EL)
 - EL0 – User space – Linux apps, Containers, RTOS apps
 - EL1 – OS space – Linux kernel, RTOS + RTOS apps
 - EL2 – Hypervisor – Xen, …
 - EL3 – Firmware – Trusted Firmware

- Multiple Security Environments
 - TrustZone (TZ) – HW protecting resources (e.g. memory)
 - Trusted Execution Environment (TEE) – SEL1

- Multiple Operating Environments (OE)
 - Linux – including Android
 - Free and commercial RTOS’s
 - FreeRTOS, Zephyr, VxWorks, Integrity, Nucleus, uC/OS, OSE, ThreadX
 - QNX/Neutrino, Sciopix, eT-kernel, Lynx, PikeOS, …
 - Bare metal (no OS) is common on smaller cores
 - Hypervisors – Xen, Jailhouse, commercial
 - Firmware/boot loaders – Trusted FW, PMU FW, uboot, …
Simplifying SW for Heterogenous Environments

Today, most heterogeneous environments are cobbled together ad-hoc
- Everybody coming up with their own shared memory scheme

There is a need to standardize how environments interact
- Configuring the environments
- Managing (lifecycle) the environments
- Passing messages between environments
- Share resources between environments
- Porting any OS using a standardized abstraction layer

Open source implementation is fastest way to standardization
- Especially if based on already existing open source projects

OpenAMP is solving these kinds of problems
OpenAMP Intro
The OpenAMP Project seeks to standardize the interactions between operating environments in a heterogeneous embedded system through open source solutions for Asymmetric Multi-Processing.
OpenAMP is an open AMP framework that includes two efforts:

1. A standardized way of using AMP
2. A clean-room open source implementation/project

OpenAMP began as Multicore Association Working Group in 2014
- Focused on communication between 2 different cores with RPMsg and Remoteproc
- open-amp and libmetal

OpenAMP Project re-launched as a Linaro Community Project in September 2019
- Overlap in membership
- Independent organization
- Infrastructure
- Budget w/ low fee
The OpenAMP Project History & Launch

- OpenAMP is an open AMP framework that includes two efforts:
 1. A standardized way of using AMP
 2. A clean-room open source implementation/project

- OpenAMP began as Multicore Association Working Group in 2014
 - Focused on communication between 2 different cores with RPMsg and Remoteproc
 - open-amp and libmetal

- OpenAMP Project re-launched as a Linaro Community Project in September 2019
 - Overlap in membership
 - Independent organization
 - Infrastructure
 - Budget w/ low fee
OpenAMP, the framework

- OpenAMP currently includes the following components:
 - Lifecycle operations - Such as start/stop another environment
 - Messaging - Sending and receiving messages
 - Low level abstractions – Sharing memory, inter-processor interrupts, …
 - Proxy operations - Remote access to services, e.g. file system
 - Under development: Resource configuration using System Device Trees

- Built on top of existing open source projects/standards
 - Remoteproc, RPMsg, Virtio, Device Trees

- Accelerate adoption by working in open source
 - Linux, RTOS, and bare metal implementations
The OpenAMP Project going forward

- Latest status on the project
 - Increased scope: OpenAMP framework + more working groups
 - Official maintainer roles
 - Technical Steering Committee
 - Board
 - Governance
 - Budget
 - Logo!

- Member points-of-view:
 - Arm processors, non-Arm processors
 - Linux, RTOS, bare metal
 - High-performance systems, resource-constrained systems
The OpenAMP Project going forward

- Latest status on the project
 - Increased scope: OpenAMP framework + more working groups
 - Official maintainer roles
 - Technical Steering Committee
 - Board
 - Governance
 - Budget
 - Logo!

- Member points-of-view:
 - Arm processors, non-Arm processors
 - Linux, RTOS, bare metal
 - High-performance systems, resource-constrained systems
OpenAMP Project working groups
OpenAMP-rp working group

- Works on original parts of OpenAMP
 - Remoteproc, RPMsg, Virtio, libmetal

- Repositories
 - https://github.com/OpenAMP/open-amp (latest release 2020.04)
 - https://github.com/OpenAMP/libmetal (latest release 2020.04)

- Active work
 - Big buffers
 - Improving testing through integration with LAVA Continuous Integration
 - Getting outstanding patches upstreamed to Linux kernel
 - Addressing backlog of pull requests
 - Back to April, October release cadence
Ramping up: Application Services working group

- What is needed to build on top of OpenAMP?
- Application developer issues that resonated most with members
 - Remote file access
 - Remote console
 - Proxy ports (e.g. proxy debug)
 - Messaging APIs (e.g. sockets)
- Working group (WG) will leverage common OS drivers & API standards where possible

![Diagram of Linux Services and Remote OS]

- Linux Services:
 1. File Systems
 2. Network Stacks
 3. Console PTYs
 4. Remote App Debug
 5. IPC

- Remote OS:
 - Application
 - Access to Linux services

Drivers specified by WG
System Device Tree working group

- Defines new Device Tree bindings
 - Describe Heterogeneous systems
 - Multiple CPUs clusters → multiple address views
 - Configure Execution Domains
 - Define the software execution context for each CPUs cluster
 - Execution level, memory ranges, devices available (by configuration)
 - RTOS'es can use it at build time and/or run time

- Repositories
 - https://github.com/devicetree-org/lopper
 - Lopper is a tool to prune the System Device Tree into a traditional device tree for a specific processor in the system
 - Reference Implementation of the System Device Tree bindings

- Upcoming work
 - Xilinx and STMicroelectronics to propose together bindings for bus-firewall configurations
 - Submit proposals to devicetree-spec@vger.kernel.org
Future: Hypervisor interfaces working group

- Document & "standardize" hypercall interfaces
- Implementable by any vendors / embedded hypervisors
- Documentation reusable for Safety Certifications
- Collaborate with existing Open Source efforts (e.g. Xen FuSa)
Examples of OpenAMP in industry
Examples of OpenAMP in industry

- **Xilinx**
 - Default AMP solution for Zynq-7000, Zynq UltraScale+ MPSoC, and Versal devices
 - Cortex-A application processor units (APUs), Cortex-R real-time processor units (RPUs). Microblaze “soft” processors in programmable logic. Either APU or RPU can act as the master.

- **Mentor Graphics**
 - Core for the Mentor Embedded Multicore Framework and Multicore Framework Cert product offerings.
 - Expands on OpenAMP: Linux as a Remote, Large Buffer, Zero Copy, Proxy support for Ethernet
 - Communication between the safe and non-safe domains in Mixed Safety-Criticality systems

- **TI**
 - Enhancing the Linux kernel implementation of RemoteProc & RPMsg
 - Defining the wire protocol between processors
 - Contributed a limited scope version of remoteproc loader into U-Boot

- **Kalray**
 - Standard message passing solution within homogeneous Manycore architecture on MPPA®3 processor
 - MPPA®3 as accelerator: virtio over PCIe
 - Within MPPA®3 processor: virtio with shared memory
Examples of OpenAMP in industry

- **Zephyr**
 - OpenAMP integrated & available

- **Nordic Semiconductor**
 - Bluetooth Host Controller Interface (HCI) based on OpenAMP in Zephyr

- **Linaro**
 - Hosting OpenAMP project through Community Projects division
 - Involvement in Zephyr, openamp-rp, LAVA testing

- **STMicroelectronics**
 - IPC in multicore and multi-SoC STM32 solutions
 - OpenAMP-OpenAMP, Linux RPMsg-OpenAMP
 - OpenAMP library used with baremetal, FreeRTOS, Zephyr

- **Wind River**
 - To accelerate the ability of developers to create edge compute applications

- **Arm**
 - Active role in System Device Tree discussion
Learning more & getting involved
More information

- GitHub project
 - https://github.com/OpenAMP/
 - Also, Lopper lives at devicetree-org: https://github.com/devicetree-org/lopper

- OpenAMP Wiki
 - https://github.com/OpenAMP/open-amp/wiki
 - Notes from calls
 - Features being worked on & under consideration

- Community Project Website
 - https://www.openampproject.org/

- Mailing lists
 - Sign up for the mailing lists at lists.openampproject.org
How to participate

› All are welcome to join the calls for the TSC & working groups!
 - Call invitations are sent to the mailing lists

› You can participate!
 - Not necessary to be from an OpenAMP Project member company

› Your company can become an OpenAMP Project member
 - Not necessary to be a Linaro member company
 - Member fees support administration for the project & infrastructure
 - OpenAMP Project membership gets the company
 • Vote on TSC
 • Vote on Board
How to become a member company

- Company representative signs Membership Agreement and Charter
- $2500 annual fee
- Current member companies (alphabetical order):

 - arm
 - KALRAY
 - Linaro
 - Mentor® (A Siemens Business)
 - NORDIC Semiconductor
 - life.augmented
 - Texas Instruments
 - WIND
 - XILINX®
Thank You