Supporting Video (de)serializers in Linux: Challenges and Works in Progress

Luca Ceresoli — AIM Sportline luca@lucaceresoli.net https://lucaceresoli.net

Embedded Linux Conference Europe 2019

About me

- Embedded Linux engineer at AIM Sportline www.aim-sportline.com
 - Develop products on custom hardware
 - Kernel, drivers, bootloader, FPGA
 - Integration, build system
- Open source enthusiast
 - Contributor to the Linux kernel,
 U-Boot, Buildroot and others

Contents

- 1 Video serdes chips
- 2 Linux support
- 3 Troubles and tribulations
- Way out
- **6** Remote I2C
- **6** Conclusions

Video serdes chips

Serializer/deserializers chipset

Serializer/deserializers chipset

Typical application

- Typical use: automotive
 - Autonomous driving (ADAS) cameras
 - Rear camera
 - Infotainment display
- SoC-centric
- Cameras/displays model well known in advance
- Cameras/displays always connected
- High electrical noise

My application

- Action camera
- Base module (SoC, processing, storage)
- Two *hot-plug* camera modules
 - Interchangeable
 - While recording from the other module
 - Possibly with a different model

Available serdes chips

- Main competitors
 - Texas Instruments FPD-Link ☑
 - Maxim GMSL 🗷
- Camera or display
- Video bus: MIPI CSI-2, Sub-LVDS, parallel
- Robust link in high electrical noise environment
- 1 to 4 inputs per serializer
- Most have remote I2C, GPIO
- Some have remote UART, audio

Texas Instruments DS90UB954 and DS90UB953

Linux support

Existing patches

[PATCH v4 0/4] MAX9286 GMSL Support &

- By Kieran Bingham, Laurent Pinchart, Jacopo Mondi, Niklas Söderlund
- For Maxim GMSL chips
- See also the ALS 2018 talk slides ☑

Existing patches

[PATCH v4 0/4] MAX9286 GMSL Support ♂

- By Kieran Bingham, Laurent Pinchart, Jacopo Mondi, Niklas Söderlund
- For Maxim GMSL chips
- See also the ALS 2018 talk slides ☑

[PATCH 0/7] mfd/pinctrl: add initial support of TI DS90Ux9xx ICs 🗷

- By Vladimir Zapolskiy
- For TI DS90Ux9xx chips
- See also the ALS 2018 talk slides ☑

Existing patches

[PATCH v4 0/4] MAX9286 GMSL Support &

- By Kieran Bingham, Laurent Pinchart, Jacopo Mondi, Niklas Söderlund
- For Maxim GMSL chips
- See also the ALS 2018 talk slides ☑

[PATCH 0/7] mfd/pinctrl: add initial support of TI DS90Ux9xx ICs 🗷

- By Vladimir Zapolskiy
- For TI DS90Ux9xx chips
- See also the ALS 2018 talk slides &

[RFC,v2 0/6] TI camera serdes and I2C address translation &

- By Luca Ceresoli
- For TI DS90Ux9xx chips
- See also: this talk:)

- Similar to BBB capes, RPi hats, but hot-plug
- I2C EEPROM on each camera (fixed slave address)
- When a camera is connected
 - 1. Add serializer, I2C adapter, GPIO chip
 - 2. Add I2C EEPROM, read model ID
 - 3. Insert model-specific device tree overlay
 - 4. DTO adds sensor and other remote devices
- On disconnection, remove overlay

Troubles and tribulations

V4L2 troubles

The ideal pipeline \rightarrow

- 1. Stream multiplexing: no support in mainline yet
- 2. Reliability: pipe should work with some nodes disabled
 - A sensor goes faulty
- 3. Dynamic pipe: remove some nodes, add different ones
 - A sensor is removed, a different model added

Devicetree troubles

- 1. Runtime DT insertion/removal not in mainline yet
- 2. Video pipelines: bidirectional endpoints links

Way out

Work around main blockers

- Main blockers for hotplug applications
 - Non-modifiable pipeline
 - Runtime Device Tree overlays

Work around main blockers

- Main blockers for hotplug applications
 - Non-modifiable pipeline
 - Runtime Device Tree overlays
- Find a workaround that
 - Is needed only for hotplug applications
 - Does not "infect" serdes drivers

Work around main blockers

- Main blockers for hotplug applications
 - Non-modifiable pipeline
 - Runtime Device Tree overlays
- Find a workaround that
 - Is needed only for hotplug applications
 - Does not "infect" serdes drivers
- Workaround: sensors always instantiated
 - V4L2 is happy
 - Device Tree is static
 - Sensor driver becomes a hack

I2C: ideal solution

I2C: proposed solution

Remote GPIO

Remote GPIO

Remote I2C

Remote I2C

- Different between TI and Maxim chips
- Discussed in linux-i2c
- BoF during Linux Plumbers Conference 2019
 - https://lucaceresoli.net/plumbers-i2c-bof
 - https://etherpad.openstack.org/p/2019-09-11-I2C-BoF
- Talk by I2C core maintainer Wolfram Sang ("Linux I2C in the 21st Century", yesterday)

Maxim GMSL: I2C switch

 $\, \bullet \,$ SER+DES are equivalent to an I2C switch

TI FPD-Link III: Address Translation (ATR)

I2C transactions are replicated based on an alias table

```
# i2cdetect -1
i2c-0 i2c amba:camera-i2c@0 I2C adapter
i2c-4 i2c i2c-0-atr-0 I2C adapter
i2c-5 i2c i2c-0-atr-1 I2C adapter
```

```
# i2cdetect -1
i2c-0
        i2c
                       amba:camera-i2c00
                                                           I2C adapter
i2c-4 i2c
                       i2c-0-atr-0
                                                           I2C adapter
i2c-5 i2c
                      i2c-0-atr-1
                                                           I2C adapter
# echo eeprom 0x0a > /sys/bus/i2c/devices/i2c-4/new device
# dmesg | tail -n2
ds90ub954 0-0030: rx0: client 0x0a mapped at alias 0x4b (eeprom)
i2c i2c-4: new device: Instantiated device eeprom at 0x0a
#
```

```
# i2cdetect -1
i2c-0
       i2c
                    amba:camera-i2c00
                                                    I2C adapter
i2c-4 i2c
                    i2c-0-atr-0
                                                    I2C adapter
i2c-5 i2c
                    i2c-0-atr-1
                                                    I2C adapter
# echo eeprom 0x0a > /sys/bus/i2c/devices/i2c-4/new device
# dmesg | tail -n2
ds90ub954 0-0030: rx0: client 0x0a mapped at alias 0x4b (eeprom)
i2c i2c-4: new device: Instantiated device eeprom at 0x0a
# hexdump /sys/bus/i2c/devices/4-000a/eeprom
0000100
#
```

Conclusions

Conclusions

- Video serdes are complex
- Video pipeline is an issue
 - V4L2 limitations
 - Additional limitations for hotplug (V4L2, Device Tree overlays)
 - There's a workaround, implies some compromise
- There is a plan for proper implementation of remote I2C (on TI chips)

Thank you for your attention!

Questions?

Luca Ceresoli luca@lucaceresoli.net

https://lucaceresoli.net

© Copyright 2019, Luca Ceresoli Slides released under Creative Commons Attribution - Share Alike 3.0 License https://creativecommons.org/licenses/by-sa/3.0/