
mentor.com/embedded

Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Qt is a registered trade mark of Digia Plc and/or its subsidiaries. All other trademarks mentioned in this document are trademarks of their respective owners.

Sean Hudson

Embedded Linux Architect

!!Part Deux!!

Shared Logging with the
Linux Kernel

www.mentor.com/embedded

Who am I?

� I am an embedded Linux architect and Member of
Technical Staff at Mentor Graphics. I have worked on
embedded devices since 1996. I started working with
Linux as a hobbyist in 1999 and professionally with
embedded Linux in 2006. In OSS, I have been involved
with the Yocto Project since it's public announcement in
2010, have served on the YP Advisory Board for two
different companies, and am currently a member of the
OpenEmbedded Board.

2

www.mentor.com/embedded

Why “Part Deux”?

� To provide an update to my talk at ELCE 2015 in Dublin

— Slides for previous presentation here:

– http://elinux.org/images/2/2b/2015-10-05_-_ELCE_-
_Shared_Logging.pdf

— Video of previous presentation here:

– https://www.youtube.com/watch?v=E4h1Of8zyVg

� Because I get to make a silly cultural reference

3

www.mentor.com/embedded

Outline

� What and why of shared logging?

� Hey! Haven’t I seen this before?

� Kernel logging structures, then and now

� Design and Implementation

� Q&A / Discussion

5

www.mentor.com/embedded

What is shared logging?

� Simply put, both the bootloader and the kernel can:

— read and write log entries for themselves normally

and

— read log entries from the other

— read multiple boot cycles

� The bootloader can also:

— Dynamically specify a shared memory location to use for logging

� In order for the bootloader to read kernel entries and to
allow multiple boot cycles, log entries must persist past
reboots. For now, I have focused on shared volatile RAM,
but this might work for NV storage of logs as well, ala
pstore.

6

www.mentor.com/embedded

Why would we want shared logging?

� Imagine debugging without logging.

— ☺

� Most common use case:

— Post-mortem analysis of a failed boot

� Other useful cases:

— Performance tweaking

— Boot timing analysis

— Boot sequencing analysis

— Boot and system debugging

� Not a silver bullet!

— Shared logging provides you with another tool in the box to use
when you need it

7

www.mentor.com/embedded

Haven’t we seen this before?

� Yes!

� From git history, back in late 2002, Klaus Heydeck added
support for a shared memory buffer that could be passed
to the kernel to be used for shared logging.

� AFAICT, this feature was only supported in the Denx’s
kernels and not for all architectures. (PPC only?)

� Focus seems to have been primarily on being able to see
bootloader entries in the kernel

� Does not appear to have been widely used

� Unfortunately, the feature suffered bit rot over time and
changes in the kernel logging structures broke it (more on
those changes later)

8

www.mentor.com/embedded

What about pstore and ramoops

� This question came up in Dublin

� From a quick review, they appear to serve slightly
different purposes

� They both rely on small, pre-allocated regions of memory

� Perhaps these could be integrated in some fashion

� Certainly, this is an area for future exploration

� Anyone know of additional features that I should look at?

� References:

— https://www.kernel.org/doc/Documentation/ABI/testing/pstore

— https://www.kernel.org/doc/Documentation/ramoops.txt

9

www.mentor.com/embedded

Kernel logging structures (then)

� As far back as 2.6.11, the first git commit in my tree, the
kernel log was a byte-indexed array of characters with a
simple array of characters

� Structure and implementation contained in printk.c

� Buffer space was declared as a static global inside printk.c

� Indices provided for logging start, logging end, and
console start locations in the buffer

� Simple implementation

� Fairly easy to support by the bootloader

10

www.mentor.com/embedded

Kernel logging structures (then)

11

www.mentor.com/embedded

Kernel logging structures (post 2012)

� In May 2012, Kay Sievers’ patch changed the structure to
a variable length record with a fixed header

� Structure and implementation still contained in printk.c

� Buffer space still declared as a static global inside printk.c

� The header is fixed and includes the timestamp

� More complex. Has more pointers for tracking

— Sequence and index for: first, next, clear, & syslog

12

www.mentor.com/embedded

Kernel logging structures (post 2012)

13

www.mentor.com/embedded

Kernel logging structures (post 2012)

14

www.mentor.com/embedded

A few observations

� The shift to a record based structure in the kernel
introduced more pointers to manage for the handoff
between the bootloader and the kernel to occur correctly

� Global static declarations in the kernel makes the logging
structures available as soon as the C runtime is available
(important later)

� Using global statics structures complicates sharing the log
entries

15

www.mentor.com/embedded

Revised goals (since last time)

� The original focus for this feature was on getting a bootloader
to write a format that the kernel understood, not to provide a
new, general mechanism for sharing.

� My goals are slightly different.

� Available all the time

— Must have negligible or no impact on regular boots

� Portable across bootloaders and architectures

— uBoot would provide POC reference, but should be easy to port

� Support dynamic, arbitrary location for logging buffer

— Allows the bootloader to specify an arbitrary location to the kernel

� Minimize ‘lost’ memory due to global static allocations

� Provide self-checking that ensured correct operation in the face
of incompatible entries seen by the bootloader of the kernel

� Provide as an ‘opt-in’ for both bootloader and kernel

16

www.mentor.com/embedded

Interface design

� To address the number of parameters needed to be
passed into the kernel, I added a control block structure

� The control block encapsulates all of the necessary
logging information including structure size, various
indices, and buffer locations for sharing purposes

� Allows a single pointer location for the control block to
change where the log information is being written

� Allows the bootloader to pass a single parameter to the
kernel

� In theory, allows the kernel to adopt the CB and start
writing immediately to the next location in the buffer (
O(1) operation)

— In practice, there are wrinkles

17

www.mentor.com/embedded

Kernel logging structures (proposed)

18

www.mentor.com/embedded

Kernel logging structures (proposed)

19

www.mentor.com/embedded

How to pass the CB to the kernel?

� Fixed, well known location

— Used by the original shared log feature

— Used to work, but is brittle/broken

– Relies on a calculation of the end of RAM to align between the kernel
and the bootloader

– Doesn’t always work!

� Command line

— Initial approach

— Very flexible and allows for dynamic setting by the user

— There’s a small performance hit that occurs during log coalescing

– This is O(n) based on the number of bootloader log entries and
kernel entries written when the coalescing occurs

— Personally, I greatly prefer this approach

— Acceptable upstream?

20

www.mentor.com/embedded

How to pass the CB to the kernel? (2)

� DeviceTree

— Second approach

— Fixed at DT compile time

— Used OF functions to extract information from DT

– Personally found this a bit difficult to work with

— Log coalescing still occurred, albeit slightly reduced from before

– This is O(n) based on the number of bootloader log entries and
kernel entries written when the coalescing occurs

— Perhaps more acceptable upstream?

21

www.mentor.com/embedded

How to pass the CB to the kernel? (3)

� DT + command line arg

— Third approach

— Using reserved memory areas in the DT relies on existing
infrastructure and ‘just works’

– Avoids platform specific code for memory reservation too

– In the UBoot POC, this utilizes the mainline fdt features to modify the
DT in a live manner

– This puts the responsibility on the bootloader to ensure memory is
reserved

— Uses command line parameter to specify memory location of lcb

— Log coalescing still occurs

22

www.mentor.com/embedded

Bootloader POC implementation

� Existing log entry format in uBoot was very different from
that in the kernel

� However, uBoot already had the concept of a versioned
log format

� So, introduced a new log format (v3) to be compatible
with the kernel format

� I dropped much of the uBoot env control variables to
simplify the design and due to issues encountered during
testing

23

www.mentor.com/embedded

Bootloader upstream status

� Ported to the mainline internally

� Some additional cleanup/refactoring is still needed

� Patches are not submitted upstream as of yet. �

24

www.mentor.com/embedded

Kernel implementation

� Relocated all the sequence and indices to a CB

� Added support for re-pointing the CB from a global static
to one passed in to the kernel

� Uses command line to pass the necessary pointer to the
lcb

� During command line processing, the values for the
shared log are parsed and captured for later use

� After mm_init(), the function setup_ext_logbuff() gets
called, which halts the logging temporarily and coalesces
the entries together

25

www.mentor.com/embedded

Kernel upstream status

� Refactoring the code since last time dropped all arch
specific code

� Almost all changes are located in printk.h/printk.c

— Exceptions are: Kconfig and main.c

� Ported to the mainline kernel as of 4.8rc

� Patches submitted to LKML on 2016/09/29

� V2 submitted to LKML on 2016/10/04

� Also available on github here:
https://github.com/darknighte/linux/tree/for_review_v2

26

www.mentor.com/embedded

Some gotchas

� Physical vs virtual addressing

— Bootloader uses physical

— Kernel uses both, depending on where you are in the code

— Making sure the right addresses are used is critical

� Mapped memory vs unmapped memory

— Kernel memory gets mapped in stages

— Make sure that the memory you are attempting to address is
mapped in before you use it

� Structure packing

— Packed structures are bad for portability

— Had to manually re-order the header struct to make it align

� Also, mucking around in init/early init is fraught with peril
and quiet failures.

27

www.mentor.com/embedded

Some gotchas (2)

� Porting to mainline

— Patches ported pretty easily and compiled pretty easily

— Reserved memory regions changed

� Building

— Building uboot for x86 has been non-trivial

— Creating test builds with same toolchain

� Testing

— Initial patch submission to the kernel got a failure for kernel-ci in
about 10 mins. �

— Turns out that turning off CONFIG_LOGBUFFER was fine, but
turning off CONFIG_PRINTK wasn’t.

28

www.mentor.com/embedded

Planned and possible future work

� Complete cleanup of U-Boot patches and submit

� Build U-Boot for x86 POC

� Investigate OF extraction of lcb pointer during early boot
to remove static global buffer in printk.c

� Investigate timer handoff to kernel for single time base

� Perhaps augment U-Boot env settings to dynamically shift
the buffer location and relocate entries

� Investigate coreboot and implement similar feature

29

www.mentor.com/embedded

Q&A DISCUSSION

