
Linaro Automated Validation on
ARM

Paul Larson <paul.larson@linaro.org>

Some Quick Background

 Working Groups
 Landing Teams
 Platform Team

Engineering units

Platform
Engineering

Validation &
Benchmarking

Infrastructure
Release management

Evaluation Builds
Android, Ubuntu,

Chrome, IVI…

Working Groups

Kernel ConsolidationKernel Consolidation

ToolchainToolchain

Power ManagementPower Management

:

Optimization & InnovationOptimization & Innovation SoC support and
optimization

SoC support and
optimization

Validation, benchmarking,
 release management

Validation, benchmarking,
 release management

GraphicsGraphics

MultimediaMultimedia

Linaro Evaluation Builds

 Ubuntu Desktop – Linaro image based on Ubuntu
Desktop

 Nano - small lightweight image for board validation
 Developer - focused image with console based

developer tools.
 ALIP - (ARM Linux Internet Platorm) minimal X based

image for internet access
 Others
 Android

Goals

 Deploy Linaro images across a variety of supported
devices, without user intervention

 Make no assumptions about whether networking works
or not

 Control the boot process

 Keep a good, recovery image

 Recover from hangs and crashes without manual
intervention

 Monitor and retain serial log

 Execute tests and store results

LAVA Components

 Driver
 Scheduler
 Job Dispatcher
 Results Dashboard

Architecture Overview

LAVA Components

 Driver
 Scheduler
 Job Dispatcher
 Results Dashboard

Driver

 Receive events from other systems
 Continuous integration (jenkins, buildbot, etc)
 Image build system (offspring)
 Android build system

 Decide on tests to run based on input stream
 Submit templated jobs to the Scheduler

LAVA Components

 Driver
 Scheduler
 Job Dispatcher
 Results Dashboard

Scheduler

 Django app
 Web UI for human job creation
 XML-RPC interface for CLI job and automated job submission
 Support pools of similar hardware

– Schedule to pool or to a specific device

 Scheduler Daemon

– Process Job Queue

– Launch dispatchers

– Handle job (in)completion

– Handle job timeouts

LAVA Components

 Driver
 Scheduler
 Job Dispatcher
 Results Dashboard

Job Dispatcher

 Jobs defined in json
 job_name – description of the job
 timeout – how long, at most, should it take
 target – which machine to run on
 actions [...]

Actions

 deploy_linaro_image

 Parameters: hwpack, rootfs
 install_abrek

 Parameters: tests[]
 boot_linaro_image

 test_abrek

 Parameters: test_name
 submit_results

 Parameters: server, stream

Example Job Submission
{
 "job_name": "foo",
 "target": "panda01",
 "timeout": 18000,
 "actions": [
 {
 "command": "deploy_linaro_image",
 "parameters": {
 "rootfs": "http://snapshots.linaro.org/11.05-daily/linaro-developer/20110208/0/images/tar/linaro-n-

developer-tar-20110208-0.tar.gz",
 "hwpack": "http://snapshots.linaro.org/11.05-daily/linaro-

hwpacks/panda/20110208/0/images/hwpack/hwpack_linaro-panda_20110208-0_armel_supported.tar.gz” }
 },
 {
 "command": "boot_linaro_image"
 },
 {
 "command": "test_abrek",
 "parameters": { "test_name": "ltp" }
 },
 {
 "command": "submit_results",
 "parameters": {
 "server": "http://dashboard.linaro.org",
 "stream": "panda01-ltp" }
 }
]
}

Test Execution

 Abrek
 Lightweight, simple test execution framework
 Modular, extensible
 Interfaces with the dashboard
 Test definition tells abrek how to:

• Install (with dependencies)

• Execute

• Parse results

 Abrek Testsuites

Stream
LTP
Open Posix Test Suite
gmpbench
gtkperf
x11perf
glmemperf
tiobench
qgears
es2gears
clutter-eglx-es20
renderbench
glmark2-es2
Unixbench
GCC/Toolchain tests

Peacekeeper
Canvas Benchmark
GUIMark2
Biolab Disaster
Monster
Bbench v1.0
v8
quake3
coremark
sunspider
pybench
qa-regression-testing
LSB
Moonbat

Currently Supported
In Progress
Under Investigation

Master Image

 Basically, just a known-good, stripped down,
Linaro image

 Needs to be able to
● Manipulate images on the test partition
● Talk to the network

● Also serves as a recovery partition

Deployment

 On the server:

 Download hwpack and rootfs
 Use linaro-media-create to create image
 Extract tarball of boot and root fs

 On the test system:

 Boot to master image
 Reformat test partitions
 wget/untar boot and root tarballs
 Reboot

− Directly interact with uboot to boot into test image

Test Execution

 Abrek
 Simple interface for installing/running tests, and

dealing with results
 Works with launch-control (our dashboard for

storing/visualizing results)
 Other tests and execution frameworks could

easily be supported
 Using abrek
 Directly running from the dispatcher

LAVA Components

 Driver
 Scheduler
 Job Dispatcher
 Results Dashboard

Dashboard

● Django
● XML-RPC
● Well-defined, versioned, JSON bundle submissions
● Basic or OpenID authentication
● Supports text or binary attachments
● CLI interface (lc-tool)

● Backup/Restore
● Sync/transfer to another system

● Reporting (in progress)
● Data source definition in XML
● Flexible reporting

Lab Hardware

 Server
 APC Switched PDUs

 For hard resetting
 Cyclades ACS 6032

 Console servers
 Basic networking

infrastructure, cables, db9
connectors, mounting
hardware, etc.

Current Systems Available

 TI PandaBoard (2)
 TI Beagle XM
 Samsung SMDK v310
 Freescale imx51
 Freescale imx53
 STE u8500 (2)
 Versatile Express (2)
 ...many more on the way :)

Gratuitous Pictures

More Gratuitous Pictures

Thank You

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

