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Some Quick Background

 Working Groups
 Landing Teams
 Platform Team
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Linaro Evaluation Builds

  Ubuntu Desktop – Linaro image based on Ubuntu 
Desktop

  Nano - small lightweight image for board validation
  Developer - focused image with console based 

developer tools.
  ALIP - (ARM Linux Internet Platorm) minimal X based 

image for internet access
  Others
  Android



Goals

 Deploy Linaro images across a variety of supported 
devices, without user intervention

 Make no assumptions about whether networking works 
or not

 Control the boot process

 Keep a good, recovery image

 Recover from hangs and crashes without manual 
intervention

 Monitor and retain serial log

 Execute tests and store results
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Architecture Overview
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Driver

 Receive events from other systems
 Continuous integration (jenkins, buildbot, etc)
 Image build system (offspring)
 Android build system

 Decide on tests to run based on input stream
 Submit templated jobs to the Scheduler
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Scheduler

 Django app
 Web UI for human job creation
 XML-RPC interface for CLI job and automated job submission
 Support pools of similar hardware

– Schedule to pool or to a specific device

 Scheduler Daemon

– Process Job Queue

– Launch dispatchers

– Handle job (in)completion

– Handle job timeouts
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Job Dispatcher

 Jobs defined in json
 job_name – description of the job
 timeout – how long, at most, should it take
 target – which machine to run on
 actions [...]



Actions

 deploy_linaro_image

 Parameters: hwpack, rootfs
 install_abrek

 Parameters: tests[]
 boot_linaro_image

 test_abrek

 Parameters: test_name
 submit_results

 Parameters: server, stream



Example Job Submission
{
  "job_name": "foo",
  "target": "panda01",
  "timeout": 18000,
  "actions": [
    {
      "command": "deploy_linaro_image",
      "parameters": {
          "rootfs": "http://snapshots.linaro.org/11.05-daily/linaro-developer/20110208/0/images/tar/linaro-n-

developer-tar-20110208-0.tar.gz",
          "hwpack": "http://snapshots.linaro.org/11.05-daily/linaro-

hwpacks/panda/20110208/0/images/hwpack/hwpack_linaro-panda_20110208-0_armel_supported.tar.gz” }
    },
    { 
      "command": "boot_linaro_image"
    },
    {
      "command": "test_abrek",
      "parameters": { "test_name": "ltp" }
    },
    {
      "command": "submit_results",
      "parameters": {
          "server": "http://dashboard.linaro.org",
          "stream": "panda01-ltp" }
    }
  ]
}



Test Execution

 Abrek
 Lightweight, simple test execution framework
 Modular, extensible
 Interfaces with the dashboard
 Test definition tells abrek how to:

• Install (with dependencies)

• Execute

• Parse results



    Abrek Testsuites

Stream 
LTP
Open Posix Test Suite
gmpbench
gtkperf 
x11perf
glmemperf
tiobench
qgears
es2gears
clutter-eglx-es20
renderbench
glmark2-es2
Unixbench
GCC/Toolchain tests 

Peacekeeper
Canvas Benchmark
GUIMark2
Biolab Disaster
Monster
Bbench v1.0
v8
quake3
coremark
sunspider
pybench
qa-regression-testing
LSB
Moonbat 

Currently Supported
In Progress
Under Investigation



Master Image

 Basically, just a known-good, stripped down, 
Linaro image

 Needs to be able to
● Manipulate images on the test partition
● Talk to the network

● Also serves as a recovery partition



Deployment

 On the server:

 Download hwpack and rootfs
 Use linaro-media-create to create image
 Extract tarball of boot and root fs

 On the test system:

 Boot to master image
 Reformat test partitions
 wget/untar boot and root tarballs
 Reboot

− Directly interact with uboot to boot into test image 



Test Execution

 Abrek
 Simple interface for installing/running tests, and 

dealing with results
 Works with launch-control (our dashboard for 

storing/visualizing results)
 Other tests and execution frameworks could 

easily be supported
 Using abrek
 Directly running from the dispatcher
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Dashboard

● Django
● XML-RPC
● Well-defined, versioned, JSON bundle submissions
● Basic or OpenID authentication
● Supports text or binary attachments
● CLI interface (lc-tool)

● Backup/Restore
● Sync/transfer to another system

● Reporting (in progress)
● Data source definition in XML
● Flexible reporting





Lab Hardware

 Server
 APC Switched PDUs

 For hard resetting
 Cyclades ACS 6032

 Console servers
 Basic networking 

infrastructure, cables, db9 
connectors, mounting 
hardware, etc.



Current Systems Available

 TI PandaBoard (2)
 TI Beagle XM
 Samsung SMDK v310
 Freescale imx51
 Freescale imx53
 STE u8500 (2)
 Versatile Express (2)
 ...many more on the way :)



Gratuitous Pictures



More Gratuitous Pictures



Thank You

Any questions? 
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