
© 2017 Toshiba Corporation

Masaki Miyagawa
Toshiba Corporation
2017 June 23

Applying Jailhouse to
the Civil Infrastructure System

© 2017 Toshiba Corporation 2

• Civil Infrastructure System

• Jailhouse

– Demonstration in QEMU/KVM

– IVSHMEM

– Applying Civil Infrastructure System

• Conclusion

Agenda

© 2017 Toshiba Corporation 3

• Civil Infrastructure System

• Jailhouse

– Demonstration in QEMU/KVM

– IVSHMEM

– Applying Civil Infrastructure System

• Conclusion

Agenda

© 2017 Toshiba Corporation 4

• Why we use Linux?

– It is easy to use many types of communication library.

– Many types of CPU architecture are supported.

– There are many types of distribution that can be used for
commercial use.

• Open Source Summit 2017

– We demonstrated power plant controller that uses CIP Kernel.

– https://www.cip-project.org/blog/2017/06/07/event-report-
open-source-summit-japan-2017

Civil Infrastructure System

https://www.cip-project.org/blog/2017/06/07/event-report-open-source-summit-japan-2017

© 2017 Toshiba Corporation 5

• Civil Infrastructure System

• Jailhouse

– Demonstration in QEMU/KVM

– IVSHMEM

– Applying Civil Infrastructure System

• Conclusion

Agenda

© 2017 Toshiba Corporation 6

• Jailhouse

– is Linux-based partitioning hypervisor.

• https://github.com/siemens/jailhouse

– version 0.6 is released.

– supports x86_64, ARM v7 and ARM v8.

– manages guest application as Cell.

• Cell occupies some hardware specified in configuration.

• This solution is called AMP(Asymmetric Multi-Processing).

Jailhouse

https://github.com/siemens/jailhouse

© 2017 Toshiba Corporation 7

• Motivation

– We want to integrate the functionality of basic controller and
special modules.

– Special modules are used for RT control.

• e.g. Turbine, Generator ...

– Traditionally, special modules are developed as a bare-metal
application or RTOS based application.

Jailhouse

RT control is required.

© 2017 Toshiba Corporation 8

• How it works?

– “inmate” is a program running in the Cell.

– Jailhouse v0.6 provide some “inmates” for demonstration.

– I studied start up process of “inmates” and memory
management system of Jailhouse.

• Demo application provided by Jailhouse

– Demonstration in QEMU/KVM @Jailhouse-0.6/README.md

Jailhouse

© 2017 Toshiba Corporation 9

• Preparation

– Boot up host Linux.

• To modify KVM parameter is needed.

– Execute QEMU.

– Build and install jailhouse at guest Linux(Root Cell).

Jailhouse

#cat /etc/modprobe.d/kvm-nested.conf
options kvm_intel_nested=1

#!/bin/sh
./qemu-system-x86_64 -machine q35,kernel_irqchip=split -m 1G -enable-kvm ¥

-vnc 133.113.27.94:0 -k ja ¥
-smp 4 -device intel-iommu,intremap=on,x-buggy-eim=on ¥
-cpu kvm64,-kvm_pv_eoi,-kvm_steal_time,-kvm_asyncpf,-kvmclock,+vmx ¥
-drive file=$1,format=qcow2,id=disk,if=none ¥
-device ide-hd,drive=disk -serial stdio -serial vc ¥
-netdev user,id=net -device e1000e,addr=2.0,netdev=net ¥
-device intel-hda,addr=1b.0 -device hda-duplex

#cd jailhouse-0.6
#make; make firmware_install

© 2017 Toshiba Corporation 10

– Modify grub.cfg and reboot RootCell.

Jailhouse

#cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-4.10.10
root=UUID=*********************
memmap=66M$0x3b000000 ro quiet

0x100000

0x0

0x3b000000

0x3f200000

Linux

Reserved

Linux

• Starting Jailhouse

#insmod jailhouse-0.6/driver/jailhouse.ko

– Load “jailhouse.ko.”
jailhouse.ko

Filesystem

#jailhouse-0.6/tools/jailhouse enable jailhouse-
0.6/configs/qemu-vm.cell

– Load “jailhouse.bin.”

jailhouse.bin

#cat qemu-vm.cell
...

.hypervisor_memory = {
.phys_start = 0x3b000000,
.size = 0x4000000,

},
...

© 2017 Toshiba Corporation 11

Jailhouse
• EPT setting for Root Cell

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

Root Cell
Physical Address Spaces

Physical Address Space

Reserved for

inmates

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

0x3b600000

Reserved for

inmates

0x3b600000

0x3f1000000x3f100000

#cat qemu-vm.cell
...

.mem_regions = {
/* RAM */ {

.phys_start = 0x0,

.virt_start = 0x0,

.size = 0x3b000000,

.flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_DMA,

},
/* RAM (inmates) */ {

.phys_start = 0x3b600000,

.virt_start = 0x3b600000,

.size = 0x3b00000,

.flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_DMA,

},
/* RAM */ {

.phys_start = 0x3f200000,

.virt_start = 0x3f200000,

.size = 0xddf000,

.flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
...

When “jailhouse.bin” is loaded, “jailhouse.bin”
creates EPT for RootCell. This process is done
in accordance with “struct jailhouse_memory”
defined in Root Cell configuration.

© 2017 Toshiba Corporation 12

Jailhouse
• EPT setting for Cell

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

Reserved for

inmates

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

0x3b6000000x3b600000

0x3f100000

When “jailhouse.bin” creates Cell for
“inmate,” EPT setting is also created by
“jailhouse.bin” in accordance with Cell
configuration.

Root Cell
Physical Address Spaces

Physical Address Space

• Creating Cell for “inmate”

#jailhouse-0.6/tools/jailhouse cell create
jailhouse-0.6/configs/apic-demo.cell

0x0

Cell
Physical Address Spaces

0x3f100000

Reserved for

inmates

0x3f100000

0x3f000000
Reserved for

inmates

0x3f100000

0x3f000000

Unmapped

In this time, “jailhouse.bin” modifies EPT
setting for Root Cell to unmap the area
occupied by “inmate.”

© 2017 Toshiba Corporation 13

Jailhouse
• EPT setting

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

Reserved for

inmates

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

0x3b6000000x3b600000

0x3f100000

“jailhouse.ko” calls hypercall. The hypercall
is handled by “jailhouse.bin” then
“jailhouse.bin” remaps physical memory
occupied by “inmate” to allow writing a
image of “inmate” by Linux.

Root Cell
Physical Address Spaces

Physical Address Space

• Loading “inmate”

#jailhouse-0.6/tools/jailhouse cell load jailhouse-
0.6/inmates/demo/x86/apic-demo.bin –a 0xf0000

0x0

Cell
Physical Address Spaces

0x3f100000

Reserved for

inmates

0x3f100000

0x3f000000
Reserved for

inmates

0x3f100000

0x3f000000

Unmapped

apic_demo.bin

apic_demo.binapic_demo.bin

The image of “inmate” is loaded by Linux.

© 2017 Toshiba Corporation 14

Jailhouse ~Trying to run demo application~

• EPT setting

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

Reserved for

inmates

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

0x3b6000000x3b600000

0x3f100000

Root Cell
Physical Address Spaces

Physical Address Space

• What “-a” option for?

#jailhouse-0.6/tools/jailhouse cell load jailhouse-
0.6/inmates/demo/x86/apic-demo.bin –a 0xf0000

0x0

Cell
Physical Address Spaces

0x3f100000

Reserved for

inmates

0x3f100000

0x3f000000
Reserved for

inmates

0x3f100000

0x3f000000

apic_demo.bin

apic_demo.binapic_demo.bin

0x0

Reserved for

inmates

apic_demo.bin

Code Segments

“jailhouse.bin” makes code segment of Cell starts from 0xf0000.

Because, all Cells would be executed from reset vector of
x86(0xffff0), and it would be executed as real mode.

On the other hand, Linux’s code segment starts at 0x0.

© 2017 Toshiba Corporation 15

Jailhouse ~Trying to run demo application~

• EPT setting

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

Reserved for

inmates

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

0x3b6000000x3b600000

0x3f100000

“jailhouse.ko” calls hypercall. The hypercall
is handled by “jailhouse.bin”, and
“jailhouse.bin” unmap physical memory
occupied by inmate to avoid to modify the
image of “inmate” from Linux.

Root Cell
Physical Address Spaces

Physical Address Space

• Starting inmate

#jailhouse-0.6/tools/jailhouse cell start 1

0x0

Cell
Physical Address Spaces

0x3f100000

Reserved for

inmates

0x3f100000

0x3f000000
Reserved for

inmates

apic_demo.bin

apic_demo.binapic_demo.bin
0x3f100000

0x3f000000

Unmapped

“apic-demo.bin” is started.

© 2017 Toshiba Corporation 16

• Civil Infrastructure System

• Jailhouse

– Demonstration in QEMU/KVM

– IVSHMEM

– Demonstration : Applying Civil Infrastructure System

• Conclusion

Agenda

© 2017 Toshiba Corporation 17

• How can we make communication between
inmate and Linux application?

– IVSHMEM provides Inter-Cell Communication.

Jailhouse

This time, we studied usage of IVSHMEM.

© 2017 Toshiba Corporation 18

Jailhouse
• IVSHMEM is provided as a virtual PCI devices

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

Reserved for

inmates

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

0x3b6000000x3b600000

0x3f100000

Root Cell
Physical Address Spaces

Physical Address Space

0x0

Cell
Physical Address Spaces

0x3f100000

Reserved for

inmates

0x3f100000

0x3f000000
Reserved for

inmates

0x3f100000

0x3f000000

#cat jailhose-0.6/configs/qemu-vm.cell
...

.mem_regions = {
{
.phys_start = 0x3f1ff000,
.virt_start = 0x3f1ff000,
.size = 0x1000,
.flags = JAILHOUSE_MEM_READ |

JAILHOUSE_MEM_WRITE,
},

},
...

.pci_devices = {
{
.type = JAILHOUSE_PCI_TYPE_IVSHMEM,
.domain = 0x0000,
.bdf = 0x0f << 3,
.bar_mask = {

0xffffff00, 0xffffffff, 0x00000000,
0x00000000, 0xffffffe0, 0xffffffff,

},
.num_msix_vectors = 1,
.shmem_region = 15,
.shmem_protocol =
JAILHOUSE_SHMEM_PROTO_UNDEFINED,
},

},
...

IVSHMEM
0x3f1ff000

0x3f1e0000

0x3f1ff000
0x3f1e0000 IVSHMEM

Configuration for RootCell

ivshmem-

demo.bin

© 2017 Toshiba Corporation 19

Jailhouse
• IVSHMEM is provided as a virtual PCI devices

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

Reserved for

inmates

0x100000

0x0

0x3b000000

0x3f200000

Linux

Linux

jailhouse.bin

0x3b6000000x3b600000

0x3f100000

Root Cell
Physical Address Spaces

Physical Address Space

0x0

Cell
Physical Address Spaces

0x3f100000

Reserved for

inmates

0x3f100000

0x3f000000
Reserved for

inmates

0x3f100000

0x3f000000

#cat jailhose-0.6/configs/ivshmem-demo.cell
...

.mem_regions = {
...

/* IVSHMEM shared memory region */
{

.phys_start = 0x3f1ff000,

.virt_start = 0x3f1ff000,

.size = 0x1000,

.flags = JAILHOUSE_MEM_READ |
JAILHOUSE_MEM_WRITE |
JAILHOUSE_MEM_ROOTSHARED,

},
},

...
.pci_devices = {

{
.type = JAILHOUSE_PCI_TYPE_IVSHMEM,
.domain = 0x0000,
.bdf = 0x0f << 3,
.bar_mask = {

0xffffff00, 0xffffffff, 0x00000000,
0x00000000, 0xffffffe0, 0xffffffff,

},
.num_msix_vectors = 1,
.shmem_region = 2,

},
},

...

IVSHMEM
0x3f1ff000

0x3f1e0000

0x3f1ff000
0x3f1e0000 IVSHMEM

Configuration for Cell

IVSHMEM
0x3f1ff000

0x3f1e0000

ivshmem-

demo.bin

© 2017 Toshiba Corporation 20

Jailhouse
• The mechanism of IRQ Sending

0x100000

0x0

0x3b000000

Linux

jailhouse.bin

Reserved for

inmates

0x100000

0x0

0x3b000000

Linux

jailhouse.bin

0x3b6000000x3b600000

0x3f100000

Root Cell
Physical Address Spaces

Physical Address Space

0x0

Cell
Physical Address Spaces

0x3f100000

Reserved for

inmates

0x3f100000

0x3f000000
Reserved for

inmates

0x3f100000

0x3f000000

IVSHMEM
0x3f1ff000

0x3f1e0000

0x3f1ff000
0x3f1e0000 IVSHMEM

IVSHMEM
0x3f1ff000

0x3f1e0000

registers &

msix table

“imate” defines PCI configuration
registers address and set it to
BAR[0] of the virtual PCI device.
This physicall adderss shall not exist
in EPT.

When “inmate” writes PCI
configuration register, EPT violation
is handled by “jailhouse.bin. “

“jailhouse.bin” sends IRQ to budy
of the “inmate.”

registers &

msix table

???

???

© 2017 Toshiba Corporation 21

• Prepare the IVSHMEM driver for Linux

– https://github.com/henning-schild/ivshmem-guest-
code/tree/jailhouse

Jailhouse

#cat jailhouse-0.6/Documentation/inter-cell-communmication.txt
...
You can go ahead and connect two non-root cells and run the ivshmem-demo. They
will send each other interrupts.
For the root cell you can find some test code in the following git repository:
https://github.com/henning-schild/ivshmem-guest-code
Check out the jailhouse branch and have a look at README.jailhouse.

https://github.com/henning-schild/ivshmem-guest-code/tree/jailhouse
https://github.com/henning-schild/ivshmem-guest-code

© 2017 Toshiba Corporation 22

• Prepare a test application for Linux

– PCI configuration registers area.

• This area related to uio_info->mem[0].

• This area will be used to send IRQ to “inmate.”

• When mmap() is applied to uio, physical address of uio_info
must be aligned to PAGE address, however it depends on
location of PCI devices.

Jailhouse

#cat linux-4.10.10/drivers/uio/uio.c
static int uio_mmap_physical(struct vm_area_struct *vma)
{

struct uio_device *idev = vma->vm_private_data;
int mi = uio_find_mem_index(vma);
struct uio_mem *mem;
if (mi < 0)

return -EINVAL;
mem = idev->info->mem + mi;

if (mem->addr & ~PAGE_MASK)
return -ENODEV;

#cat /proc/bus/pci/devices
0078 1af41110 0 c0000004 0 0 0 c0000104 0 0 100 0 0 0 20 0 0 uio_ivshmem
0070 1af41110 0 c0000204 0 0 0 c0000124 0 0 100 0 0 0 20 0 0 uio_ivshmem

BAR0 (registers).

0x4 is masked by Linux, however we were

not able to mmap 0xc0000200.

We just changed order of the IVSHMEM

definition in the configuration.

© 2017 Toshiba Corporation 23

• Prepare a test application for Linux

– To send IRQ to “imate”.

– IVSHMEM area.

• This area related to uio_info->mem[1].

Jailhouse

static void jh_ivshmem_mmio_write(void *addr, uint32_t value)
{

asm volatile("movl %0,(%1)" : : "r" (value), "r" (addr));
}

void jh_ivshmem_send_irq(uint32_t *registers)
{

jh_ivshmem_mmio_write((registers + 3), 1);
}

© 2017 Toshiba Corporation 24

• Communication between Linux and Cell

Jailhouse

© 2017 Toshiba Corporation 25

• Civil Infrastructure System

• Jailhouse

– Demonstration in QEMU/KVM

– IVSHMEM

– Applying Civil Infrastructure System

• Conclusion

Agenda

© 2017 Toshiba Corporation 26

• Applying power plant control application.

– Traditionally, power plant control application uses libm.

– In this demonstration, we use sin() function to generate sin
wave.

– openlibm is linked to “inmate”.

• https://github.com/JuliaLang/openlibm

Applying Civil Infrastructure System

Configuration Makefile.lib

Index: inmates/lib/x86/Makefile.lib
==---
inmates/lib/x86/Makefile.lib (リビジョン 1366)
+++ inmates/lib/x86/Makefile.lib (作業コピー)
@@ -12,6 +12,7 @@

KBUILD_CFLAGS += -m64 -mno-red-zone
GCOV_PROFILE := n
+OPENLIBM := /home/miyagawa/09.Jailhouse/02.Src/openlibm-
master/libopenlibm.a

define DECLARE_TARGETS =
_TARGETS = $(1)

@@ -27,7 +28,7 @@
obj/NAME-linked.o: ... obj/$(NAME-y) lib/lib[32].a
.SECONDEXPANSION:
$(obj)/%-linked.o: $(INMATES_LIB)/inmate.lds $$(addprefix
$$(obj)/,$$($$*-y)) ¥
- $(INMATES_LIB)/$$(if $$($$*_32),lib32.a,lib.a)
+ $(INMATES_LIB)/$$(if $$($$*_32),lib32.a,lib.a) $(OPENLIBM)

$(call if_changed,ld)

$(obj)/%.bin: $(obj)/%-linked.o

https://github.com/JuliaLang/openlibm

© 2017 Toshiba Corporation 27

• TIPS

– When we tried this inmate, triple fault was invoked.

– To enable SSE (Streaming SIMD Extensions) instruction is
needed.

Applying Civil Infrastructure System

Index: inmates/lib/x86/header.S
===
--- inmates/lib/x86/header.S (リビジョン 1365)
+++ inmates/lib/x86/header.S (作業コピー)
@@ -46,7 +46,15 @@

.code32
start32:
+ mov %cr0,%eax
+ and 0xFFFB,%ax
+ or 0x2,%ax
+ mov %eax,%cr0

mov %cr4,%eax
+ or 3 << 9,%ax
+ mov %eax,%cr4
+
+ mov %cr4,%eax

or $X86_CR4_PAE,%eax
mov %eax,%cr4

© 2017 Toshiba Corporation 28

• Lessons Learned

– Jailhouse provides strict isolation.

– IVSHMEM is easy to use.

– Debugging “inmate” is difficult.

• We hope useful tool would be provided.

• Our Future Plan

– To watch development of Jailhouse.

– Try to run Jailhouse on real hardware.

– continue to learn Jailhouse.

Conclusion

