Difference between revisions of "BeagleBoard/GSoC/Ideas-2016"

From eLinux.org
Jump to: navigation, search
(Add name to mentors)
m (Sarnold moved page BeagleBoard/GSoC/Ideas to BeagleBoard/GSoC/Ideas-2016: archive previous year)
 
(102 intermediate revisions by 28 users not shown)
Line 7: Line 7:
  
 
=Welcome!=
 
=Welcome!=
BeagleBoard.org hopes to be accepted as a mentoring organization in the [[BeagleBoard/GSoC|Google Summer of Code]] for 2015! Below, we've collected project ideas for the GSoC-2015.
+
BeagleBoard.org has been accepted as a mentoring organization in the [[BeagleBoard/GSoC|Google Summer of Code]] for 2016! Below, we've collected project ideas for the GSoC-2016.
  
==Background==
+
==What is Google Summer of Code?==
BeagleBoard.org is a volunteer organization that seeks to advance the state of open-source software on [http://en.wikipedia.org/wiki/Open-source_hardware open-source hardware] platforms capable of running high-level languages and operating systems (primarily Linux) in embedded environments. Born from taking mobile phone processors and putting them on low-cost boards to build affordable desktop computers, BeagleBoard.org has evolved to focus on the needs of the "maker" community with greater focus on the I/O needed for controlling motors and reading sensors to build things like robots, 3d printers, flying drones, in-car computer systems and much more. Past BeagleBoard.org GSoC projects included [[BeagleBoard/GSoC/2014_Projects#Project:_BotSpeak_PRU_Firmware|creating an interpreter for tiny CPUs]], [[BeagleBoard/GSoC/2014_Projects#Project:_PyBBIO|adding SPI and sensor support to Python]], [[BeagleBoard/GSoC/2014_Projects#Project:_Bone101|an HTML and git based tutorial sharing environment]], [[BeagleBoard/GSoC/2014_Projects#Project:_BeaglePilot|porting autopilot software to Linux]], [[BeagleBoard/GSoC/2014_Projects#Project:_BeagleLogic|an open source 100MHz 14-channel logic analyzer]], [[BeagleBoard/GSoC/2014_Projects#Project:_Android_Remote_Display|using Android tablets as Linux displays]], [[BeagleBoard/GSoC/2013_Projects#Linux_ADC_IIO_Support|putting ADC support in Linux under the IIO framework]], [[BeagleBoard/GSoC/2013_Projects#Android-based_Boot|using Android phones as a network boot source]], [[BeagleBoard/GSoC/2013_Projects#Userspace_Arduino|Running Arduino code on Linux]], [[BeagleBoard/GSoC/2013_Projects#Robot_Operating_System|Robot Operating System support within the Yocto Project build system]], [[BeagleBoard/GSoC/2013_Projects#Minix_I2C|Minix I2C support]], [[BeagleBoard/GSoC/2010_Projects/C6Run|an RPC framework for heterogeneous processor communication]], [[BeagleBoard/GSoC/2010_Projects/USBSniffer|a transparent USB packet sniffer]], [[BeagleBoard/GSoC/2010_Projects/XBMC|ARM optimizations for XBMC]], [[BeagleBoard/GSoC/2010_Projects/FFTW|ARM optimizations for FFTs]], [[BeagleBoard/GSoC/2010_Projects/Pulse_Width_Modulation|make-shift pulse-width-modulation]] and [[BeagleBoard/GSoC/2010_Projects/OpenCV|RPC optimizations for OpenCV]]. BeagleBoard.org has benefited from sponsorship from Texas Instruments, [[CircuitCo]], Digi-Key, element14 and others, but avoids any dependence on that sponsorship for sustaining the effort. The project has evolved over the past few years with over 500,000 boards in circulation with developers worldwide and strong roots in the Linaro, Yocto Project, Angstrom Distribution, Debian and Linux communities---and support for running most major Linux distributions including Ubuntu, Android, Fedora, ArchLinux, Gentoo, Buildroot and many more.
+
Spend your summer break writing code and learning about open source development while earning money! Accepted students work with a mentor and become a part of the open source community. Many become lifetime open source developers! The 2016 student application window is March 14th to 25th.
  
BeagleBoard was inspiration for Raspberry Pi[http://www.linuxuser.co.uk/features/raspberry-pi-interview-eban-upton-reveals-all] and is available for about $50 through over 30 distributors world-wide (and is even available at Microcenter and Radio Shack in the USA), but is more than a throw-away computer. It is an instance of true open hardware, exposing users to the broader world of electronics, demystifying computers and fostering an environment of clones that have changed the industry for good.
+
Google Summer of Code is open to post-secondary students, age 18 and older in most countries.
 +
 
 +
Read more on [https://summerofcode.withgoogle.com/organizations/4817552005922816/ the GSoC site BeagleBoard.org landing page] and [https://developers.google.com/open-source/gsoc/faq the FAQ].
 +
 
 +
==BeagleBoard.org Background==
 +
BeagleBoard.org is a volunteer organization that seeks to advance the state of open-source software on [http://en.wikipedia.org/wiki/Open-source_hardware open-source hardware] platforms capable of running high-level languages and operating systems (primarily Linux) in embedded environments. Born from taking mobile phone processors and putting them on low-cost boards to build affordable desktop computers, BeagleBoard.org has evolved to focus on the needs of the "maker" community with greater focus on the I/O needed for controlling motors and reading sensors to build things like robots, 3d printers, flying drones, in-car computer systems and much more. Past BeagleBoard.org GSoC projects included [[BeagleBoard/GSoC/2014_Projects#Project:_BotSpeak_PRU_Firmware|creating an interpreter for tiny CPUs]], [[BeagleBoard/GSoC/2014_Projects#Project:_PyBBIO|adding SPI and sensor support to Python]], [[BeagleBoard/GSoC/2014_Projects#Project:_Bone101|an HTML and git based tutorial sharing environment]], [[BeagleBoard/GSoC/2014_Projects#Project:_BeaglePilot|porting autopilot software to Linux]], [[BeagleBoard/GSoC/2014_Projects#Project:_BeagleLogic|an open source 100MHz 14-channel logic analyzer]], [[BeagleBoard/GSoC/2014_Projects#Project:_Android_Remote_Display|using Android tablets as Linux displays]], [[BeagleBoard/GSoC/2013_Projects#Linux_ADC_IIO_Support|putting ADC support in Linux under the IIO framework]], [[BeagleBoard/GSoC/2013_Projects#Android-based_Boot|using Android phones as a network boot source]], [[BeagleBoard/GSoC/2013_Projects#Userspace_Arduino|Running Arduino code on Linux]], [[BeagleBoard/GSoC/2013_Projects#Robot_Operating_System|Robot Operating System support within the Yocto Project build system]], [[BeagleBoard/GSoC/2013_Projects#Minix_I2C|Minix I2C support]], [[BeagleBoard/GSoC/2010_Projects/C6Run|an RPC framework for heterogeneous processor communication]], [[BeagleBoard/GSoC/2010_Projects/USBSniffer|a transparent USB packet sniffer]], [[BeagleBoard/GSoC/2010_Projects/XBMC|ARM optimizations for XBMC]], [[BeagleBoard/GSoC/2010_Projects/FFTW|ARM optimizations for FFTs]], [[BeagleBoard/GSoC/2010_Projects/Pulse_Width_Modulation|make-shift pulse-width-modulation]] and [[BeagleBoard/GSoC/2010_Projects/OpenCV|RPC optimizations for OpenCV]]. BeagleBoard.org has benefited from sponsorship from Texas Instruments, [[CircuitCo]], Digi-Key, element14 and others, but avoids any dependence on that sponsorship for sustaining the effort. The project has evolved over the past few years with over 1,000,000 boards in circulation with developers worldwide and strong roots in the Linaro, Yocto Project, Angstrom Distribution, Debian and Linux communities---and support for running most major Linux distributions including Ubuntu, Android, Fedora, ArchLinux, Gentoo, Buildroot and many more.
 +
 
 +
BeagleBoard was inspiration for Raspberry Pi[http://www.linuxuser.co.uk/features/raspberry-pi-interview-eban-upton-reveals-all] and is available for about $50 through over 30 distributors world-wide (and is even available at Micro Center and Radio Shack in the USA), but is more than a throw-away computer. It is an instance of true open hardware, exposing users to the broader world of electronics, demystifying computers and fostering an environment of clones that have changed the industry for good.
  
 
Students will be expected to demonstrate an understanding of cross-compiling before being accepted, but support for demonstration is available through the IRC channel that typically has approximately 150 online chatters logged on at any time, most with sufficient experience to explain the process.
 
Students will be expected to demonstrate an understanding of cross-compiling before being accepted, but support for demonstration is available through the IRC channel that typically has approximately 150 online chatters logged on at any time, most with sufficient experience to explain the process.
  
'''''<span style="color:red">Every accepted student will be sent a BeagleBone Black before the first week of coding for testing their project.</span>'''''
+
'''''<span style="color:red">Every accepted student will be sent a BeagleBone Black, SeeedStudio BeagleBone Green or BeagleBoard-X15 before the first week of coding for testing their project.</span>'''''
  
 
Additional hardware will be provided depending on need and value.
 
Additional hardware will be provided depending on need and value.
Line 25: Line 32:
 
Student proposals can encompass projects inspired from the following list of ideas or can include personal project ideas. Previous Google Summer of Code projects show that the key to success is being passionate about your project, so propose something that is extremely interesting to you, even if it is not on this list. We will be glad to help students develop ideas into projects via [http://webchat.freenode.net/?channels=beagle-gsoc the BeagleBoard GSoC IRC] or [http://groups.google.com/group/beagleboard-gsoc the BeagleBoard-GSoC mailing list]. There are many potential project ideas and we will match students to projects based on their interests and help scope the proposals to something that can be completed in the Summer of Code timeframe.
 
Student proposals can encompass projects inspired from the following list of ideas or can include personal project ideas. Previous Google Summer of Code projects show that the key to success is being passionate about your project, so propose something that is extremely interesting to you, even if it is not on this list. We will be glad to help students develop ideas into projects via [http://webchat.freenode.net/?channels=beagle-gsoc the BeagleBoard GSoC IRC] or [http://groups.google.com/group/beagleboard-gsoc the BeagleBoard-GSoC mailing list]. There are many potential project ideas and we will match students to projects based on their interests and help scope the proposals to something that can be completed in the Summer of Code timeframe.
  
There are more than 500 existing projects listed at http://beagleboard.org/project. If you are interested in any of the projects listed on the BeagleBoard.org projects page, contact the project members to see if there are any aspects of their projects that can be enhanced to create a GSoC project. There are also several ideas on the [[ECE497_Project_Ideas|ECE497 class project idea list]]. You can also check out [[BeagleBoard/GSoC/Ideas-2014|last year's idea page]].
+
There are more than 500 existing projects listed at http://beagleboard.org/project. If you are interested in any of the projects listed on the BeagleBoard.org projects page, contact the project members to see if there are any aspects of their projects that can be enhanced to create a GSoC project. There are also several ideas on the [[ECE497_Project_Ideas|ECE497 class project idea list]]. You can also check out [[BeagleBoard/GSoC/Ideas-2015|last year's idea page]].
  
 
==Mentors wondering where to help==
 
==Mentors wondering where to help==
 
Please start by registering your ideas for student projects below by following the template provided with the existing ideas. Furthermore, scroll down to the bottom and give everyone a bit of information about your expertise and availability by adding yourself to the table. Jason will make final approvals for mentor assignments based on if we first get accepted as a mentoring organization and best matching mentor skill sets with student project ideas deemed valuable to the community.
 
Please start by registering your ideas for student projects below by following the template provided with the existing ideas. Furthermore, scroll down to the bottom and give everyone a bit of information about your expertise and availability by adding yourself to the table. Jason will make final approvals for mentor assignments based on if we first get accepted as a mentoring organization and best matching mentor skill sets with student project ideas deemed valuable to the community.
  
You will also need to register on [https://www.google-melange.com/gsoc/homepage/google/gsoc2015 Melange] and request to be a mentor for BeagleBoard.org.
+
You will also need be invited by an administrator to register on [https://summerofcode.withgoogle.com/organizations/4817552005922816/ the GSoC site] and request to be a mentor for BeagleBoard.org.
  
 
==General requirements==
 
==General requirements==
Line 46: Line 53:
 
# Students will demonstrate their ability to cross-compile and utilize version control software by creating a "Hello World" application and generating a pull request to https://github.com/jadonk/gsoc-application/tree/master/ExampleEntryJasonKridner.  For assistance, please visit http://beagleboard.org/chat or utilize the beagleboard-gsoc Google Group.  The "Hello World" application must print your name and the date out in an ARM Linux environment.  Freely available emulators may be used to test your application or you can ask anyone on the chat or mailing list to help you test.
 
# Students will demonstrate their ability to cross-compile and utilize version control software by creating a "Hello World" application and generating a pull request to https://github.com/jadonk/gsoc-application/tree/master/ExampleEntryJasonKridner.  For assistance, please visit http://beagleboard.org/chat or utilize the beagleboard-gsoc Google Group.  The "Hello World" application must print your name and the date out in an ARM Linux environment.  Freely available emulators may be used to test your application or you can ask anyone on the chat or mailing list to help you test.
 
# All projects will produce reusable software components and will not be "what–I-built-over-my-summer-vacation" projects. Including a hardware component is welcome, but the project *deliverable* will be software that may be utilized by a wide audience of the BeagleBoard.org community.
 
# All projects will produce reusable software components and will not be "what–I-built-over-my-summer-vacation" projects. Including a hardware component is welcome, but the project *deliverable* will be software that may be utilized by a wide audience of the BeagleBoard.org community.
 +
 +
==Idea template==
 +
Description
 +
<br>
 +
 +
''Goal:'' <br>
 +
''Hardware Skills:'' <br>
 +
''Software Skills:'' <br>
 +
''Possible Mentors:''<br>
 +
''Upstream Repository:'' <br>
 +
''References:'' <br>
  
 
=Ideas=
 
=Ideas=
Line 51: Line 69:
 
Improving the state of the Linux kernel, especially with regards to embedded devices and interfaces. Includes improved ARM/OMAP/Sitara platform support, simplifying the development of add-on hardware for embedded systems and exchanging hardware connectivity information with userspace.
 
Improving the state of the Linux kernel, especially with regards to embedded devices and interfaces. Includes improved ARM/OMAP/Sitara platform support, simplifying the development of add-on hardware for embedded systems and exchanging hardware connectivity information with userspace.
  
===BeagleRT: Real-Time Linux with the BeagleBone Black===
+
==Improving the BeagleBone low-latency multi-channel audio system==
Assessment of the real-time limitations and capabilities with the BeagleBone Black.
+
Based on existing hardware from http://www.creative-technologies.de/linux-based-low-latency-multichannel-audio-system-2/
<br>
 
  
* vanilla kernel
+
* Extend driver architecture to Beagle Board X15 (more computational power for more DSP capabilities), including performance test at CPU load conditions, add DSP library to make use of X15's DSPs
* vanilla with PREEMPT option
+
* Create USB Audio Class 1 and/or 2 http://www.linux-usb.org/gadget/ Gadget Kernel Module, and optimizing throughput latency to allow cape to be used as independent PC soundcard
* PREEMPT_RT patches
+
* Further optimize available driver for BBG for latency, with focus on ASOC driver
* Xenomai patches
+
* Make a real-time audio processor box on beaglebone. Needs HD audio cape, could use PRUs for real-time sound processing (ie, guitar input) and second midi source using alsa or hardware cape. Also like to have pitch/envelope-following synth for analog instrument/mic input.
* PRUSS
 
 
 
''Goal:'' Many applications require a certain degree of real-time response. This project will analyze, test and compare the different approaches for providing Real-Time responses with the BeagleBone Black development board.<br>
 
''Hardware Skills:'' PRU, PPM, PWM, PRUSS<br>
 
''Software Skills:'' C, C++, Python, Assembly<br>
 
''Possible Mentors:'' Víctor Mayoral Vilches, Siddharth Bharat Purohit<br>
 
''Workload:'' 1 student full time. <br>
 
''GitHub:'' https://github.com/BeagleRT/BeagleRT<br>
 
''References:'' https://www.osadl.org/fileadmin/dam/rtlws/12/Brown.pdf<br>
 
 
 
===Upstreaming Beagleboard.org Kernel Patches===
 
The BeagleBone currently relies on a number of out-of-tree kernel patches in order to boot. These patches are maintained by Koen Kooi (CircuitCo) and come from many sources, including TI employees and various mailing lists. Getting more of these patches upstream would make it easier to boot a BeagleBone and also make use of a BeagleBone easier for users and kernel developers who need to track upstream kernel changes, or who otherwise need to be closer to the bleeding edge of Linux kernel development. The current patch set is [https://github.com/beagleboard/kernel/tree/3.8 maintained at github] and contains scripts to easily patch an upstream kernel. The scripts in this repository are used to build the BeagleBoard.org kernels which ship with the Angstrom SD card images.
 
<br>
 
 
 
''Goal:'' Push as many patches as possible to [http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git Linus's mainline kernel tree] via the appropriate [http://git.kernel.org/cgit/ staging kernels] for the subsystems involved.<br>
 
''Existing Project:'' [http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git The Mainline Linux Kernel], [http://github.com/beagleboard/kernel/tree/3.8 patches needing to be pushed]<br>
 
''Hardware Skills:'' Able to read schematics, understand basic digital logic and monitor logic-level digital signals.<br>
 
''Software Skills:'' Able to write software in C, create patches to the Linux kernel and perform cross-compilation and testing.<br>
 
''Possible mentors:'' Matt Porter, Matt Ranostay, Koen Kooi, Alan Ott<br>
 
 
 
===IIO debugging tools===
 
Quick background: IIO is the new way of doing sensors but being a newer interface, it lacks tools
 
for debugging. This project is to produce sometools to debug drivers.
 
There are several ways this project can happen:<br>
 
1. We can implement userland tools that read IIO data similar to the evtest tool. <br>
 
2. We can implement a event handler for the IIO driver. This way existing tools and code can be used. There was references from another mailing list (probally LKML) talking about this.<br>
 
 
 
''Goal:'' Userspace application similar to evtest that captures debug events and instrumented IIO driver code to produce those events.<br>
 
''Existing Project:'' [http://github.com/beagleboard/kernel/tree/3.8 patched kernel with IIO driver]<br>
 
''Hardware Skills:'' None.<br>
 
''Software Skills:''C coding (1), (2) requires kernel coding<br>
 
''Possible mentors:'' Hunyue Yau<br>
 
 
 
===MMC and DMA Linux performance ===
 
Improving performance of MMC driver by understanding issues, improving MMC, DMA drivers and eliminating bottlenecks.
 
 
 
''Goal:''
 
Both MMC and DMA are critical to high performance of I/O intensive workloads on a Beagleboard/ARM platform, even fast system boot up depends on it.
 
 
 
A good amount of performance improvement is possible just by identifying what's going on in hot paths and how things can be done more simply, without breaking anything else. Also improvements are possible using innovative techniques such as intelligent buffer allocation and reducing overhead where possible in dependent components such as DMA. Cutting the fat in hot paths is definitely a start.
 
 
 
''Existing Project:'' [http://kernel.org Upstream Kernel]<br/>
 
''Hardware Skills:'' Yes<br/>
 
''Software Skills:'' C, Possible use of JTAG, ftrace, perf etc.<br/>
 
''Possible mentors:'' Joel Fernandes
 
===Enhance ADC driver for BeagleBone and BeagleBone Black===
 
Improve the onboard ADC to support more features provided by the hardware. The hardware supports
 
things like periodic sampling and averaging along with the ability to schedule the different channels
 
and allow them to be configured differently.
 
 
 
''Goal:'' The Beagleboard.org community lacks a common unified way of accessing the different features available on the ADC. Some of these hacks such as attempts at periodic sampling squaders hardware resources on the BeagleBone when in reality the ADC block can do it directly. The goal is to create
 
a drive with a plan to upstream that will expose these additional features. It should try to coordinate with the current driver maintainer. The coordination and upstreaming parts needs to be
 
weighed and considered due to the limited GSoC time frame.
 
 
 
''Existing Project:'' <br>
 
''Hardware Skills:'' Yes<br>
 
''Software Skills:'' C<br>
 
''Possible mentors:'' Hunyue Yau (others welcome to volunteer)
 
 
 
 
 
 
 
==ARM processor support in open source operating systems and libraries==
 
Optimizations to applications and libraries like XBMC to make them run better on resource constrained environments or to take advantage of more specialized processing elements.
 
 
 
===Library of Arduino-compatible functions for StarterWare===
 
This would be an implementation of Arduino utilizing the BeagleBone Black and the StarterWare O/S independent library for accessing the hardware. Without having to access the hardware through an operating system, developers will be able to fine-tune the system to achieve optimal resource management of the CPU, peripherals and memory.
 
The project would also include basic documentation and generation of code samples for various functionality of the library, such as SPI,Serial,Ethernet for starters. This would make the project thorough and ready for use by various developers in the community.
 
 
''Goal:'' Utilize the Energia fork of Arduino to push support for BeagleBone and BeagleBone Black<br>
 
''Existing Project:'' [https://github.com/energia/Energia Energia], [http://processors.wiki.ti.com/index.php/StarterWare StarterWare]<br>
 
''Hardware Skills:'' Yes<br>
 
''Software Skills:'' C/C++<br>
 
''Possible mentors:'' Jason Kridner (others can be referred if there are interested students)
 
  
 
==Heterogeneous co-processor support in open source operating systems and libraries==
 
==Heterogeneous co-processor support in open source operating systems and libraries==
Enabling usage of DSPs, PRUs, FPGAs, Cortex-M3s, Arduinos, MSP430 launchpads and other attached processing platforms.
+
Enabling usage of DSPs, PRUs, FPGAs, Cortex-Ms, Arduinos, MSP430 launchpads and other attached processing platforms.
  
===PRU Bridge===
+
==Process Sensor Data in Real-Time==
The aim of the project is to create a multi channel userspace Linux to PRU bridge (driver). Developers should be able to send and receive data seamlessly from the ARM or PRU. On the Linux side each channel will be represented by a file, and writing to a channel is a simple file write operation. Similarly if the client program on Linux want to read, it will read the file corresponding to the channel. On the PRU side, there will be a event loop listening to any events on any channels. If there is valid data on any channel, the corresponding callback is called.<br>
+
* Need a sonic anemometer for open source weather station (use PRUs to calculate sonic velocity and wind components). Needs ultrasonic ping sensors and mounting framework.
 +
* Port/implement MAV (drone) optical flow or stereo image processing to PRUs, use "Blue" or Black (via BBIO cape) as Ardupilot platform.
  
Currently the widely used libprussdrv supports exporting of 'interrupts' via sysfs, but no clean way of data transfer. The PRU-bridge will be a remote proc based sysfs driver. Channels here are generic, will enable export of data and interrupts to userspace. [Each channel could carry it's own semantic meaning, completely upto the developer].<br>
+
==Sample PRU code interfacing with other kernel interfaces==
 +
Write sample code to demostrate how data to and from the PRU can be exposed via standard user interfaces. Possible samples include:
 +
* Expose the PRU as a I2C/UART/SPI etc. The would act as a bitbang I2C master interface that other I2C drivers can leverage.
 +
* Expose data from the PRU as an IIO, input, and/or character device.
 +
The goal is to show the 2 pieces (kernel + PRU firmware) needed to use the PRU as a "normal" HW.
 +
Most likely this will have to use the remote proc interface.
  
Internally the kernel driver will maintain a shared memory circular buffer for each channel, and read or write on a sysfs file will result in an "upcall-downcall" action (a method in which the kernel and PRU interact). Different channels could be specialized for different requirements (i.e. one channel could be fine tuned for block transfers, another for a stream interface).<br>
+
==Linux userspace support of embedded devices and interfaces in high-level languages==
 +
Improving the Bonescript JavaScript library, the PyBBIO Python library, Userspace Arduino, web-based interface libraries, examples or alternatives in other languages.
  
This project will also require the student to develop a Node.js/Python based API to communicate with the PRU.<br>
+
For PyBBIO this could include support for the latest 4.1 Linux kernel (see [https://github.com/graycatlabs/PyBBIO/milestones/4.1%20kernel%20support 4.1 milestone here]), addressing [https://github.com/graycatlabs/PyBBIO/issues open issues], adding new features and device drivers, etc..
Another interesting add on would be if the driver supported dynamic pin-muxing when prompted by the PRU. (i.e. can the PRU tell the kernel to enable h/w PWM on particular pins (instead of GPIO)?)<br>
 
'''Having a standardized driver like this will eliminate the need for writing separate drivers as in the case of applications like [https://github.com/deepakkarki/pruspeak pruspeak].'''
 
  
 +
==BeagleSat Platform Integration==
 +
* Goal: Integrate BeagleSat "satellite" platform into existing ArduPilot framework, including previous GSoC BeagleSat magnetometer application; BeagleBone blue has most of the required hardware, and black is already a supported hardware platform for ardupilot (via BBMini or Proto capes), however, ArduPilot does not have a satellite vehicle platform (should probably be derived from ArduCopter).
 +
* Hardware Skills: soldering/prototyping, serial/debug, sensors
 +
* Software Skills: high-level language skills (Python, C, etc), some knowledge of micro-controller compilers and targets, kernel config/programming (some)
 +
* Possible Mentors: Steve Arnold, Alexander Hiam
 +
* Upstream Repository: [https://github.com/nvisnjic/BeagleSat BeagleSat] , [https://github.com/BeaglePilot/ardupilot BeaglePilot] , [https://github.com/mirkix/BBBMINI BBMini]
 +
* References: [http://www.strawsondesign.com/#!board-features BeagleBone Blue board features] , [http://dev.ardupilot.com/wiki/building-for-beaglebone-black-on-linux/ Building (ardupilot) for BeagleBone Black on Linux] , [http://dev.ardupilot.com/wiki/mavlink-commands/ MAVLink Commands]
  
''Goal'': Develop a driver to enable a robust communication channels b/w Linux userspace and PRU.<br>
+
==Improving initial experience for novice developers==
''Existing project'': small writeup available at [https://github.com/deepakkarki/pru_serial pru_serial_doc] and high level python API [https://gist.github.com/alexanderhiam/4310934a026b79fc8c65 RPC example]<br>
+
Improving the methods for communicating how to build projects, improving the out-of-box experience for novices and consolidating support for simplified home manufacturing (CNC, 3D printers, laser cutters, pick-and-place machines, etc.), drones/bots (ROS, IMU, video streaming, etc.) or other common tasks.
''Hardware skills:'' Knowledge of Linux system programming, basic understanding of Device Driver, PRU architecture.<br>
 
''Software skills:'' Good knowledge of C, working knowledge of Python/Node.js<br>
 
''Possible mentors:'' Deepak Karki, Alexander Hiam<br>
 
 
 
===PRUSS Support for the newer kernels===
 
 
 
Until now, libprussdrv has been the first point of contact for a prospective user of the Programmable Real-Time Units present on the BeagleBone Black. However in GSoC 2014 the two projects targeting the PRUs - BeagleLogic and BotSpeak worked on the remoteproc framework of the Linux kernel for the PRUs which was found to give better results.
 
 
 
However, not everyone should need to hack the kernel and the drivers for buiding their projects and as such a proper lightweight message passing framework and firmware loading infrastructure would increase the utility of the PRUs that are on board the BeagleBone (Black).
 
 
 
Possible design goals of the new framework:
 
 
 
* '''Upstreaming''' The idea is to have support for the PRU in the mainline kernel and not in another "vendor" kernel. <br>Thus the entire framework has to be written keeping the Kernel coding guidelines so that the patch will be ready for submission to the LKML soon by the end of the coding period.
 
 
 
* '''Simple and easy-to-use API''' Need to generate examples, documentation and keep the API as simple and straightforward as possible. There is no point in having yet another PRU framework if no one is using it.
 
 
 
* '''Language-Agnostic''' Whether one swears by C, uses Python or is a JavaScript programmer, everyone can use the same basic API and objects to leverage the processing capabilities of the PRU. <br>Alexander Hiam posts a sample [https://gist.github.com/alexanderhiam/4310934a026b79fc8c65 gist] which could be used as a starting point.
 
 
 
* '''Lightweight''' The PRU is optimized for low latency memory access and I/O operations, be it toggling a GPIO, generating stepping pulses or controlling large streams of WS2812B LED strip modules or sampling GPIOs at regular intervals into RAM.  Larger messages increase this overhead.
 
 
 
* '''Support for interrupts to userspace''' The ability to get a callback from the PRUs to userspace or kernel space (according to need of the application). A kernel module may be able to "attach" and "detach" itself from the main pru-remoteproc driver to extend its functionality if so needed.
 
 
 
* '''Memory Management''' The ability to allocate shared buffers of arbitrary size shared between the PRU and the kernel if required.
 
 
 
The list as such is not exhaustive and prospective students / developers are encouraged to participate and edit this section with possible suggestions to make the PRUSS programming more productive and accessible to everyone.
 
 
 
''Goal'': Create a new mainline kernel-friendly infrastructure that leverages functionality of the PRU<br>
 
''Existing project'': BeagleLogic, PRUSpeak, <br>
 
''Hardware skills:'' Understanding of basic embedded systems.<br>
 
''Software skills:'' Able to write software in C, understand existing patches with PRU support, PRU Assembly. create patches to the Linux kernel and perform cross-compilation<br>
 
''Possible mentors:'' Kumar Abhishek<br>
 
 
 
===PRU upstreaming===
 
Remove HWMOD dependency requirement for PRU along with adding device tree bindings so it can be upstreamed into Linus's tree.
 
 
 
''Goal'': Push patches to Linux mainline providing support for the AM335x PRU<br>
 
''Existing project'': https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/<br>
 
''Hardware skills:'' Able to read schematics, understand basic digital logic and monitor logic-level digital signals<br>
 
''Software skills:'' Able to write software in C, understand existing patches with PRU support, create patches to the Linux kernel and perform cross-compilation<br>
 
''Possible mentors:'' Start with Jason Kridner and Matt Porter, but we'll get some others involved<br>
 
 
 
===PRU firmware loader===
 
Allow "firmware" which are really binary PRU applications to be loaded directly on PRU cores and executed using the request_firmware() functionality of the Linux Kernel. This should also be  Cape Manager to load PRU cape specific applications.
 
 
 
Ideal workflow:
 
 
 
* Cape detected that uses the PRU
 
** Setup pinmux
 
* Find the respective firmware file for PRU core (or both cores) /lib/firmware/cape_A020_pru0.bin
 
* Load onto PRU and begin execution.
 
 
 
''Goal'': Push patches to Linux mainline providing support to loading firmware on PRU cores and executing<br>
 
''Existing project'': https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/<br>
 
''Hardware skills:'' Able to read schematics, understand basic digital logic and monitor logic-level digital signals<br>
 
''Software skills:'' Able to write software in C, create patches to the Linux kernel and perform cross-compilation<br>
 
''Possible mentors:'' Matt Ranostay, Matt Porter<br>
 
 
 
===Program PRU using high-level scripting languages===
 
Based on Chris Roger's BotSpeak work to provide a virtual machine for typical Arduino functions that can be accessed from LabView, build a virtual machine to enable PRU programming from Bonescript. The virtual machine is a simple interpreter that loops over the commands to perform such as delay, pinMode, analogRead, analogWrite, digitalRead and digitalWrite functions.
 
 
 
A basic design is elaborated upon at http://github.com/jadonk/pruduino
 
  
''Goal'': Implement a BotSpeak interpreter that off-loads hard real-time tasks from Bonescript onto the PRU and include that in the BoneScript project<br>
+
==SPI Flash Emulator (possibly via PRU)==
''Existing projects'': [http://github.com/jadonk/pruduino PRUDUINO], http://github.com/beagleboard/am335x_pru_package, http://github.com/jadonk/bonescript, [https://sites.google.com/site/botspeak/the-language Chris' language definition]<br>
+
Often in embedded devices, SPI NOR flash is being used more and more as the main non-volatile memory due to cost and technical abilities, but developing software and firmware for embedded devices which use SPI NOR flash as their main non-volatile memory often results in very slow code-compile-test sequences.  This is due to SPI NOR flash's very slow erase and write times even when using a fast programmer like a Dediprog SF100 or Tin Can Tools SPI Hook. Typically, developers will purchase a SPI NOR flash emulator in order to speed development, as programming the emulator's memory can take 1% of the time it takes to program an actual SPI flash part which greatly improves the code-compile-test sequence throughput. However, typical emulators like this often cost upwards of $1000 or more. Creating a lower cost SPI NOR flash emulator which uses the McSPI interface on AM335x or the PRU to handle the physical SPI slave interface and Linux's USB gadget capabilities to load the data from a PC host would result in a much lower cost but high performance SPI NOR flash emulator.
''Hardware skills:'' Able to read schematics, understand basic digital logic and monitor logic-level digital signals<br>
 
''Software skills:'' Able to write software in JavaScript and assembly<br>
 
''Possible mentors:'' Chris Rogers, Jason Kridner<br>
 
  
==Linux userspace support of embedded devices and interfaces in high-level languages==
+
Initial development likely could be done using breadboard circuits without needing any special cape hardware. Development and testing could use a single BBB to act as both the emulator and the target, such as having the emulator portion expose a 64 Mb (8 MB) emulated SPI flash and then have the normal AM335x SPI host port access it as a block device or through spidev.  Longer term, special cape hardware could be designed to support level shifting but initial development should not require any special PCB.
Improving the Bonescript JavaScript library, the PyBBIO Python library, Userspace Arduino, web-based interface libraries, examples or alternatives in other languages.
 
  
===Implementing and testing core libraries in Userspace Arduino===
+
Since the McSPI interface on AM335x can only operate at up to 16 MHz in slave mode (even in OPP100, it's slower in OPP50), it will first need to be evaluated if using a PRU is the best course of action or if just using the McSPI interface would be a better choice.
Implementing and testing core libraries in Userspace Arduino, especially SPI, I2C, Wire, Serial, Servo, Stepper
 
  
This would primarily target the Arduino Tre.
+
* Goal: Create a generic SPI slave framework in Linux with McSPI as the first hardware layer and a SPI flash emulator as the first protocol driver.<br />
 +
* Hardware Skills: General breadboarding with jumper wires.<br />
 +
* Software Skills: Linux kernel C programming.<br />
 +
* Possible Mentors: Andrew Bradford<br />
 +
* Upstream Repository:kernel.org<br />
 +
* References:
  
===Making a stable release of Processing's serial libraries for Tre===
+
==PRU Framebuffer==
 +
Like was done before on AM18xx (http://hackaday.com/2012/06/26/offloading-vga-generation-onto-a-coprocessor/) but bring the capability to AM335x.  There is value in having a PRU video output system as some newer TI SoC have many PRU but no video output (such as AM5716) and sometimes the way pinouts work for a given design, the normal video output pins on a SoC may not be usable but a PRU may be able to reach usable pins.
  
===Making a stable release of OpenFrameworks's serial libraries for Tre===
+
* Goal: PRU firmware which can drive a TTL LCD panel at a single or multiple standard resolutions along with Linux framebuffer driver enablement and communications to the PRU for both sending/receiving messages and sending of image data.<br />
 +
* Hardware Skills: Ability to jumper wire BBB to an off the shelf TTL LCD panel breakout.<br />
 +
* Software Skills: Linux kernel driver work.<br />
 +
* Possible Mentors: Andrew Bradford<br />
 +
* Upstream Repository: kernel.org<br />
 +
* References: http://hackaday.com/2012/06/26/offloading-vga-generation-onto-a-coprocessor/
  
==Improving initial experience for novice developers==
+
==Open-AVB support for BeagleBone==
Improving the methods for communicating how to build projects, improving the out-of-box experience for novices and consolidating support for simplified home manufacturing (CNC, 3D printers, laser cutters, pick-and-place machines, etc.), drones/bots (ROS, IMU, video streaming, etc.) or other common tasks.
+
Ethernet AVB is being designed into most next generation automotive audio systems and is starting to be adopted for professional audio environments such as studios. However, most Ethernet AVB stacks are available only as commercial products from competing vendors. The AVNu Alliance, the standards organization for Ethernet AVB, does sponsor the FOSS Open-AVB project (https://github.com/AVnu/Open-AVB). Open-AVB currently only has proof-of-concept support for x86 and the I210 Ethernet NIC. AM335x and AM57xx have the necessary silicon support to support Ethernet AVB.
  
===node-webkit based cross-platform getting-started app===
+
* Goal: Development can target two BeagleBones, supporting each in Open-AVB as both talker and listener. The effort will involve abstracting some of the x86 specific code in Open-AVB for ARMv7, enabling Open-AVB framing over CPSW Ethernet, and handling audio sourcing/sinking on each BeagleBone. The end goal is to use gstreamer to pass audio and/or video from a BeagleBone acting as a talker to a BeagleBone acting as a listener while complying with the AVB standards.
Newbies often have a difficult time following directions that could be replaced by an application. The steps to download and install an application is something that even newbies can typically manage. This avoid issues like having bad browsers or not having typical development tools like 'ssh'. This is a common problem across all embedded Linux platforms and node-webkit provides a good solution for making it cross-platform.
+
* Hardware Skills: Basic skills in setting up Beaglebones and network cabling.
 +
* Software Skills: Ability to work in kernel and userspace in C. This will require work both in the AM335x Ethernet driver and the userspace Open-AVB project.
 +
* Possible Mentors: Matt Porter
 +
* Upstream Repository: https://git.kernel.org/cgit/ and https://github.com/AVnu/Open-AVB
 +
* References: https://en.wikipedia.org/wiki/Audio_Video_Bridging
  
''Features'':
+
==StratchX extension for BoneScript==
* Provide instructions for getting up-and-running with the board based (incorporate the Getting Started Guide)
+
[http://scratchx.org ScratchX] is a graphical programming tool for new programmers. [http://beagleboard.org/bonescript BoneScript] provides the ability to directly communicate with the I/O functions of a BeagleBone directly from within the browser. For examples see my presentation on [http://beagleboard.org/project/javascript-tricks/ JavaScript tricks]. ScratchX provides a fairly simple [http://scratchx.org/#faq-scratch-extensions extension mechanism] for which it would be easy to add BoneScript support.
* Automatically discover boards on the LAN using mDNS and predetermined IP addresses
 
* Act as a browser to interact with the board, including performing SSH and SCP
 
* Discover the latest SD card images from multiple distributions
 
* Bootload the board with a USB-mass-storage-class application
 
* Program SD cards through the board or a USB adapter
 
* Program on-board eMMC
 
  
''Goal:'' Provide a downloadable application for Linux, Windows and Mac that enables unexperienced users to get going enough to start learning about using Linux and the embedded I/O.<br>
+
==BeagleBone Blue APIs==
''Existing Project:'' [http://github.com/jadonk/beaglebone-getting-started/tree/node-webkit-app Incomplete node webkit app for the BeagleBone Getting Started guide]<br>
+
* Goal: To create easy-to-use APIs for the hardware on the [http://beagleboard.org/blue BeagleBone Blue]. This should consist of developing/improving kernel drivers for the on-board sensors, developing a kernel driver for the PRU servo driver, etc., then reimplementing the [http://www.strawsondesign.com/#!manual-dc-motors Strawson APIs] to use these kernel drivers. If time allows, APIs could also be implemented in Bonescript and/or PyBBIO.
''Hardware Skills:'' N/A<br>
+
* Hardware Skills: Some soldering, prototyping (hooking up and testing motors, etc.)
''Software Skills:'' Able to write software in JavaScript and work with node.js modules<br>
+
* Software Skills: C, Linux kernel drivers, possibly PRU C or assembly, Device Tree
''Possible mentors:'' Jason Kridner<br>
+
* Possible Mentors: Alex Hiam, Deepak Karki
 +
* Upstream Repository: [https://github.com/beagleboard/linux beagleboard/Linux]
 +
* References: [https://github.com/StrawsonDesign/Robotics_Cape_Installer Strawson software]
  
===BoneScript web pages with live-running examples and documentation===
+
==BBB-based Serial Terminal Server==
{{#ev:youtube|VP0DOheLxQA||right|5 JavaScript Tricks for BeagleBone}}
+
Often in embedded development it is valuable to have a serial terminal server which can retain a serial port connection along with buffered past I/O separate from a typical host PC, either for longer term logging of serial port data or to enable remote management of a device via serial port.  Commercial units which have this capability are very expensive. The BeagleBones have 4 highly capable UARTs exposed besides UART0 through the cape connectors and a simple cape hardware could easily enable a BeagleBone to physically have all the interfaces needed to be a serial terminal server. The cape hardware does not need to be created for this project to go forward, so long as other devices which connected to the BeagleBone terminal server used 3.3 V UARTs themselves.
The BoneScript JavaScript library enables hardware control from web pages using socket.io for remote procedure calls. This provides an excellent environment for teaching how to wire-up sensors and controls and rapidly prototype user interfaces. Numerous examples exist on the web, but consolidation and testing are required to make them usable by novices. Examples include interfacing with potentiometers, light sensors, temperature sensors, motors and LED arrays then visualizing/controlling with Twitter, Facebook, jQuery, Spacebrew and dweet,io.
 
  
''Goal:'' About 25 web pages with executable script that demonstrate how to connect up sensor and actuator hardware integrated into the bone101 repository and shared on http://beagleboard.org/Support/BoneScript<br>
+
This project would begin with a survey of existing software which could be adapted to provide a terminal server experience (for example something as simple as using GNU screen with some adaptations over an SSH connection to the BeagleBone) and then proceed to create software changes needed to enable such operation in an easy to use and deploy way. This resulting (or found) software would likely end up being generic for Linux based serial terminal servers. The end result of this project should likely be an easy to deploy SD card image to enable someone to setup a low cost serial terminal server based on a BeagleBone in only a few minutes.
''Existing Projects:'' [http://makezine.com/2014/01/14/5-easy-javascript-tricks-you-can-teach-your-beaglebone/ 5 easy tricks presentation], http://beagleboard.org/Support/BoneScript, https://github.com/jadonk/bone101, [https://github.com/jadonk/beaglebone-getting-started/blob/add-bone101/Docs/demo_bmp085.html BMP085 Bonescript example], [http://elinux.org/Category:ECE497 ECE497 examples], [http://jsfiddle.net/gh/gist/jquery/1.9.1/9602198/ JSFiddle on GIST example]<br>
 
''Hardware Skills:'' Basic knowledge of digital circuits.<br>
 
''Software Skills:'' JavaScript and some familiarity with Linux<br>
 
''Possible mentors:'' Jason Kridner<br>
 
  
===Using BeagleBone PRUs to control CNC and 3D printer stepper motor Drivers===
+
A reach goal would be to enable the cape hardware and also to potentially provide DC relays which could switch 5-12 V at 2-3 A such that development boards could be powered on and off through the same software interface as is used for the serial communications. Since hardware is not the focus of GSoC, actual development of such hardware should not be the focus of the project itself.
This project is to write code for the PRU (realtime processors on the AM335x used in the Beagle Bone) so that it can generate multiple step and direction outputs based on a queue of commands in real time. This needs to be done in real time so the acceleration and coordination of multiple stepper motors can be controlled and coordinated. A step/dir signal is commonly used in a lot of stepper motor drivers. While it is possible to generate stepper phase information from the PRU, it is also undesireable from a testing stand point. An example of a reason for doing this is controlling the X/Y directions of the head of a 3D printer so that it can generate precise curves. While similar code has been done, it is not done in a real time fashion so it is difficult to add coordination between motors and/or maintain a known acceleration.<p>
 
  
The result of this code should be something interfaceable to a control system like the non realtime portions of the Linux CNC project (formerly the EMC project). But as a demo, this same code should also demonstrate a node.js functionality such as a "G-code" interpreter. This node.js portion can be considered a second project due to the different skill sets required and ideally this project would be split between two GSoC students. One project would be working mostly on PRU assembly with integration into the Linux kernel. The other project would be working mostly on userspace JavaScript in node.js and C++ code for anything needing optimization or low-level kernel access. Mentors would heavily assist on defining the right interfaces between the two programming environments.
+
==USB support for HelenOS on BeagleBoard XM and BeagleBone computers==
  
''Goal'': create code to use the AM335x PRUs to generate multiple step and direction outputs for reprap and CNC applications<br>
+
Implement HelenOS drivers for the USB host/OTG controllers as found on the BeagleBoard XM and BeagleBone single-board computers that will be part of the HelenOS DDF (Device Driver Framework) and USB stack.
''Existing projects'': [http://github.com/beagleboard/am335x_pru_package Pru Documentation], [https://www.kernel.org/doc/htmldocs/uio-howto.html UIO Driver documentation]<br>
 
''Hardware skills:'' Able to read schematics, understand basic digital logic and monitor logic-level digital signals<br>
 
''Software skills:'' Assembly and C coding. Node.js for g-code interpretation<br>
 
''Possible mentors:''Jason Kridner, Hunyue Yau, Laine Walker-Avina<br>
 
  
===Cross platform USB boot===
+
HelenOS is a portable microkernel-based multiserver operating system designed and implemented from scratch. It decomposes key operating system functionality such as file systems, networking, device drivers and graphical user interface into a collection of fine-grained user space components that interact with each other via message passing. A failure or crash of one component does not directly harm others. HelenOS is therefore flexible, modular, extensible, fault tolerant and easy to understand.
Boot (and flash) your BeagleBone (Black) from a Windows, Mac or Linux computer without using a microSD card.
 
  
Extend [https://github.com/ungureanuvladvictor/BeagleDroid last year's GSoC project] to boot from an Android device to support Windows, Mac and Linux hosts.
+
HelenOS features basic support for the popular BeagleBoard XM and BeagleBone single-board computers. HelenOS also has its own USB stack, but because BeagleBone uses a non-standard USB host controller and BeagleBoard XM comes with a (sometimes) flaky EHCI host controller, and a non-standard OTG USB controller, HelenOS cannot unfold its full potential on these platforms, where most of the peripherals are meant to be attached via USB (mouse, keyboard, network, etc.).
  
''Goal:'' Download a Linux image from the web and boot a BeagleBone using it over USB<br>
+
* Goal: Implement HelenOS drivers for the BeagleBone USB OTG controller, BeagleBoard XM OTG controller and get the HelenOS EHCI driver running on BeagleBoard XM
''Existing Project:'' https://github.com/ungureanuvladvictor/BeagleDroid, https://github.com/ungureanuvladvictor/BBBlfs<br>
+
* Hardware Skills: basic comprehension of the various USB connectors, interfaces and host controllers, studying hardware documentation
''Hardware Skills:'' Some knowledge of USB<br>
+
* Software Skills: driver development, USB stack development, C, non-POSIX
''Software Skills:'' C and familiarity with Mac, Linux and Windows<br>
+
* Possible Mentors: Jakub Jermář
''Possible mentors:'' Vladimir Pantelic, Jason Kridner, Vlad Ungureanu<br>
+
* Upstream Repository: https://code.launchpad.net/~jan.vesely/helenos/usb, bzr://bzr.helenos.org/mainline
 +
* References: [http://www.helenos.org HelenOS home page], [http://www.helenos.org/ticket/647 HelenOS tickets for this idea], [http://www.helenos.org/wiki/DeveloperDocs/Peripherals#USB HelenOS collection of documentation pointers on USB peripherals], [https://code.launchpad.net/~jan.vesely/helenos/usb HelenOS USB 2.0 branch], [http://helenos-usb.sourceforge.net/manual/ Description of the original HelenOS USB stack], [http://elinux.org/BeagleBoard_Community#USB USB on BeagleBoard], [http://beagleboard.org/beagleboard-xm BeagleBoard XM home], [http://beagleboard.org/bone BeagleBone home], [http://processors.wiki.ti.com/index.php/Usb-am335x-quick-start Usb-am335x-quick-start], [https://en.wikipedia.org/wiki/USB_On-The-Go Wikipedia article about USB OTG]
  
===Android under Angstrom===
+
== FlightGear remote Cockpit on BBB ==
Some people want to play Angry Birds or run other Android apps on their BeagleBoard/BeagleBone.  Of course, you could use the Rowboat Android project as-is, but then you'd have to give up all of their typical Linux/X11 applications available in Angstrom.  This project would use an Android-enabled kernel and a combination of both Angstrom and Android file systems.  The input and display methods required for Android would need to be adjusted to run in on a virtual terminal and chroot/chvt would be used to invoke the various user space windows.
 
  
This has essentially been done once as part of [https://www.alwaysinnovating.com/beagleboard/ Always Innovating's Super-Jumbo] demo running Ubuntu, Angstrom, ChromeOS and Android simultaneously. The fundamental challenge is getting it reproducible and integrated into the OpenEmbedded build system for Angstrom and then starting to minimize the wasted file space by sharing libraries. Eventually, even making Android applications run in a window is desired.
+
[http://www.flightgear.org/ FlightGear] is a free and open source cross-platform flight simulator platform or game. It support multiple computer and devices, so that we could build our remote cockpit at home, a [http://www.flightgear.org/Projects/747-JW/ example like this].  
  
''Goal'': Run Android applications under Angstrom and toggle back-and-forth using CTRL-ALT-Fn key presses.<br>
+
However, this project will only build a small prototype panel for FlightGear. It will use a small touch screen to display basic instruments for Aircraft - Atitude Indictor, Airspeed, Altitude and Heading, and two virtrual control "handle" for landing gear and flaps. The BBB will proform as a remote control device, it will connect to main flightgear instance FDM via network, and it could also connect to control devices or joystick/pedals  as a control center.
''Existing projects'': http://arowboat.org, http://www.angstrom-distribution.org<br>
 
''Hardware skills:'' Minimal<br>
 
''Software skills:'' Able to write software in C and Java, experience with X11 and Android<br>
 
''Possible mentors:'' Hunyue Yau, Vladimir Pantelic<br>
 
  
===Automated testing for BeagleBone and BeagleBone Black===
+
On the other hand, when the remote panel is built, it could be used for Quadcopter and ROV remote control in the future.
Produce code samples and test harness for use of I/O on BeagleBone to be placed in the neutral elinux.org BeagleBone community pages.
 
  
''Goal:'' The Beagleboard.org community has lacked a canonical source of high quality documentation on how to use peripherals found on AM335x. Peripheral use to be documented will include UARTs, I2C, SPI, PWM, ADC, USB Host/Gadget as well as advanced topics such as software development and optimization for the M3 and PRU coprocessors.<br>
+
* Goal: Build a prototype panel for FlightGear
''Existing Project:'' [http://www.elinux.org/BeagleBone_Community elinux.org BeagleBone Community Page]<br>
+
* Hardware Skills: interfaces and host controllers, studying hardware documentation
''Hardware Skills:'' Yes<br>
+
* Software Skills: UI design and programing (C++, Qt, Python any availiable will okay), XML parse and basic flight theory.
''Software Skills:'' C<br>
+
* Possible Mentors: Tong Hui
''Possible mentors:'' Hunyue Yau, Matt Porter and Jason Kridner
+
* Upstream Repository: [https://github.com/saul-rodriguez/PanelBoeing A Qt Project]
 +
* References: [http://flightgear.sourceforge.net/getstart-en/getstart-en.html FlightGear Manual], [https://sites.google.com/site/raspberryflightgear/home FlightGear Panel on a Rpi], [http://garagelab.com/profiles/blogs/tutorial-flightgear-with-arduino Arduino control aircraft in FlightGear]
  
==Previous ideas==
+
=Previous ideas=
 +
* [[BeagleBoard/GSoC/Ideas-2015]]
 
* [[BeagleBoard/GSoC/Ideas-2014]]
 
* [[BeagleBoard/GSoC/Ideas-2014]]
 
* [[BeagleBoard/GSoC/Ideas-2013]]
 
* [[BeagleBoard/GSoC/Ideas-2013]]
Line 312: Line 199:
 
! Name
 
! Name
 
! IRC nickname
 
! IRC nickname
! Melange name
 
 
! Native language
 
! Native language
 
! Other languages
 
! Other languages
Line 321: Line 207:
 
|-
 
|-
 
| Jason Kridner
 
| Jason Kridner
| jkridner
 
 
| jkridner
 
| jkridner
 
| English
 
| English
Line 329: Line 214:
 
| wiring, timing diagrams, basic debug
 
| wiring, timing diagrams, basic debug
 
| BoneScript development
 
| BoneScript development
|-
 
| Vladimir Pantelic
 
| av500
 
| vp7
 
| German
 
| English, Serbian
 
| CET
 
| Experienced on most areas of Embedded Linux, Multimedia
 
| Schematic Review + Design
 
| Embedded Linux, Linux Multimedia, Android
 
|-
 
| Vlad Ungureanu
 
| vvu
 
| ungureanuvladvictor
 
| Romanian
 
| English
 
| GMT +2
 
| Linux, C, Android, U-Boot, build-systems, USB
 
| -
 
| Cross-Platform USB Boot, Android Based Display
 
 
|-
 
|-
 
| Hunyue Yau
 
| Hunyue Yau
 
| ds2
 
| ds2
| hygsoc
 
 
| English
 
| English
 
| -
 
| -
 
| US Pacific
 
| US Pacific
 
| Android, C, Linux, scripting, Kernel
 
| Android, C, Linux, scripting, Kernel
| Yes
+
| schematics, wiring, EE details
 +
| Kernel/HW
 +
|-
 +
| Anuj Deshpande
 +
| anujdeshpande
 +
| English
 
| -
 
| -
 +
| UTC+530
 +
| C, Python, Golang
 +
| Schematics
 +
| Arduino, Android
 +
|
 
|-
 
|-
| Tom Rini
+
| Andrew Bradford
| Tartarus
+
| bradfa
| trini
 
 
| English
 
| English
 
| -
 
| -
 
| US Eastern
 
| US Eastern
| C, u-boot, OpenEmbedded
+
| C, Linux, U-Boot
| -
+
| KiCad, some RF
| U-Boot or OpenEmbedded development
+
| DSP/PRU/M4 communication from Linux, wifi, USB gadget
 
|-
 
|-
| Pantelis Antoniou
+
| Alex Hiam
| panto
+
| alexhiam
| panto
 
| Greek
 
 
| English
 
| English
| GMT+2
 
| Linux Kernel, S/W Architecture
 
 
| -
 
| -
| Embedded Linux architecture fixes
+
| US Eastern
 +
| Python, C, programming...
 +
| schematics, design, debugging, prototyping
 +
| PRU, high-level userspace stuffs, kernel (device drivers?) X15?
 
|-
 
|-
| Deepak Karki
+
| Vladimir Pantelic
| karki
+
| av500
| karki
+
| German
 
| English
 
| English
| Hindi, Kannada
+
| CET
| IST
+
| C, Android, embedded programming
| PRU drivers, Python userspace libraries
+
| schematics, design, debugging, prototyping
| -
+
| kernel, Android, dsp
| PRU Bridge, PyBBIO
 
 
|-
 
|-
| Kumar Abhishek
+
| Robert Manzke
| Abhishek_
+
| rma
| Abhishek-Kakkar
+
| German
 
| English
 
| English
| Hindi
+
| CET
| IST
+
| C, kernel, audio interfacing
| PRU, Linux Kernel Programming
+
| schematics, design, debugging, prototyping
| Yes
+
| kernel, audio, dsp
| PRUSS Support for newer kernels
 
 
|-
 
|-
| Víctor Mayoral Vilches
+
| Steve Arnold
| vmayoral
+
| nerdboy
| vmayoral
+
| English
| English, Spanish
 
|
 
| CET
 
| Linux Kernel, C, C++, python
 
 
| -
 
| -
| BeagleRT
+
| PST8PDT
 +
| Python, kernel/bootloader, OS, sensor interfaces
 +
| design, debugging, prototyping
 +
| kernel, sensors/data acquisition/processing
 
|-
 
|-
| Alexander Hiam
+
| Matt Porter
| alexanderhiam
+
| mdp
| alexanderhiam
 
 
| English
 
| English
| -
+
| C :)
 
| US Eastern
 
| US Eastern
| Python, C, Linux Kernel
+
| U-Boot, kernel, drivers, upstream, AVB, networking/ipcs
| Prototyping, design, layout, debugging
+
| Schematic review, part selection, debugging
| PRU Bridge, PRUSS Support for the newer kernels
+
| kernel, upstreaming, AVB, automotive
 
|-
 
|-
| Samy Kamkar
+
| Kumar Abhishek
| samy/samy_
+
| Abhishek_
 +
| English, Hindi
 
| -
 
| -
 +
| IST,+0530
 +
| C, Kernel, PRU related, embedded
 +
| Yes
 +
| kernel, PRUs, X15
 +
|-
 +
| Jakub Jermář
 +
| jermar
 +
| Czech
 +
| English
 +
| CET
 +
| everything HelenOS, C, Kernel, embedded
 +
| basic
 +
| HelenOS USB drivers for BeagleBone and BeagleBoard XM
 +
|-
 +
| Deepak Karki
 +
| karki_
 
| English
 
| English
| -
+
| Hindi, kannada
| US Eastern
+
| India (IST)
| Python, C, Linux Kernel
+
| PyBBIO, PRU programming, basic kernel stuff.
| Privacy and security researcher, computer hacker, whistleblower and entrepreneur
+
| yes
| BeaglePilot
+
| BeagleBone Blue APIs.
 
|-
 
|-
| Joel Fernandes
+
| Michael Welling
| joel_
+
| m_w
| joelagnel
 
 
| English
 
| English
 
| -
 
| -
 
| US Central
 
| US Central
| C, Linux Kernel, Python
+
| C, Linux Kernel, U-Boot, BASH
| Processor Engineer, Embedded systems Architecture
+
| KiCad, FPGA, Robotics
| Linux kernel improvement (perf and functionality)
+
| Kernel, Robotics, FPGA
 
|-
 
|-
| Greg Kroah-Hartman
+
| Tong Hui
| gregkh
+
| tonghuix
| gregh
+
| Chinese
 +
| English
 +
| UTC+8
 +
| C, driver, Embedded Programming.
 +
| KiCAD, schematics, design, debugging, testing
 +
| Beaglebone Black, Flightgear
 
|-
 
|-
| David Scheltema
+
| Andrew Henderson
| dschelt
+
| hendersa
| dcschelt
 
 
| English
 
| English
| Latin ;)
+
| -
| US Pacific
+
| US Eastern
 +
| C/C++, ARM asm, Linux, Linux kernel, Android
 +
| Prototyping, Eagle PCB
 +
| BeagleBone Black, Android, Linux userspace multimedia
 
|-
 
|-
| Charles Steinkuehler
+
| Chris Simmonds
|
+
| simmondscd
| cdstienkuehler
+
| English
|-
+
| -
| Steve French
+
| GMT
| VoltVisionFrenchy
+
| Android, Linux, U-Boot, kernel, drivers, C, C++, Java
| voltvisionfrenchy
+
| Schematics, basic wiring, debugging
 +
| Android, Hardware support, Real-time
 
|-
 
|-
|Anuj Deshpande
+
| Name
|anujdeshpande
+
| IRC nickname
|anujdeshpande
+
| Native language
|English
+
| Other languages
|German, Hindi
+
| Timezone
|IST / GMT-530
+
| Software help
|C, Python, JS
+
| Hardware help
 +
| Focus projects
 
|}
 
|}
[[BeagleBoard/GSoC/Ideas-2012#Mentors|Previous mentors]]
+
[[BeagleBoard/GSoC/Ideas-2015#Mentors|Previous mentors]]

Latest revision as of 19:14, 13 November 2016


Welcome!

BeagleBoard.org has been accepted as a mentoring organization in the Google Summer of Code for 2016! Below, we've collected project ideas for the GSoC-2016.

What is Google Summer of Code?

Spend your summer break writing code and learning about open source development while earning money! Accepted students work with a mentor and become a part of the open source community. Many become lifetime open source developers! The 2016 student application window is March 14th to 25th.

Google Summer of Code is open to post-secondary students, age 18 and older in most countries.

Read more on the GSoC site BeagleBoard.org landing page and the FAQ.

BeagleBoard.org Background

BeagleBoard.org is a volunteer organization that seeks to advance the state of open-source software on open-source hardware platforms capable of running high-level languages and operating systems (primarily Linux) in embedded environments. Born from taking mobile phone processors and putting them on low-cost boards to build affordable desktop computers, BeagleBoard.org has evolved to focus on the needs of the "maker" community with greater focus on the I/O needed for controlling motors and reading sensors to build things like robots, 3d printers, flying drones, in-car computer systems and much more. Past BeagleBoard.org GSoC projects included creating an interpreter for tiny CPUs, adding SPI and sensor support to Python, an HTML and git based tutorial sharing environment, porting autopilot software to Linux, an open source 100MHz 14-channel logic analyzer, using Android tablets as Linux displays, putting ADC support in Linux under the IIO framework, using Android phones as a network boot source, Running Arduino code on Linux, Robot Operating System support within the Yocto Project build system, Minix I2C support, an RPC framework for heterogeneous processor communication, a transparent USB packet sniffer, ARM optimizations for XBMC, ARM optimizations for FFTs, make-shift pulse-width-modulation and RPC optimizations for OpenCV. BeagleBoard.org has benefited from sponsorship from Texas Instruments, CircuitCo, Digi-Key, element14 and others, but avoids any dependence on that sponsorship for sustaining the effort. The project has evolved over the past few years with over 1,000,000 boards in circulation with developers worldwide and strong roots in the Linaro, Yocto Project, Angstrom Distribution, Debian and Linux communities---and support for running most major Linux distributions including Ubuntu, Android, Fedora, ArchLinux, Gentoo, Buildroot and many more.

BeagleBoard was inspiration for Raspberry Pi[1] and is available for about $50 through over 30 distributors world-wide (and is even available at Micro Center and Radio Shack in the USA), but is more than a throw-away computer. It is an instance of true open hardware, exposing users to the broader world of electronics, demystifying computers and fostering an environment of clones that have changed the industry for good.

Students will be expected to demonstrate an understanding of cross-compiling before being accepted, but support for demonstration is available through the IRC channel that typically has approximately 150 online chatters logged on at any time, most with sufficient experience to explain the process.

Every accepted student will be sent a BeagleBone Black, SeeedStudio BeagleBone Green or BeagleBoard-X15 before the first week of coding for testing their project.

Additional hardware will be provided depending on need and value.

For more information, check out http://beagleboard.org and http://beagleboard.org/brief.

Students looking for ideas

Student proposals can encompass projects inspired from the following list of ideas or can include personal project ideas. Previous Google Summer of Code projects show that the key to success is being passionate about your project, so propose something that is extremely interesting to you, even if it is not on this list. We will be glad to help students develop ideas into projects via the BeagleBoard GSoC IRC or the BeagleBoard-GSoC mailing list. There are many potential project ideas and we will match students to projects based on their interests and help scope the proposals to something that can be completed in the Summer of Code timeframe.

There are more than 500 existing projects listed at http://beagleboard.org/project. If you are interested in any of the projects listed on the BeagleBoard.org projects page, contact the project members to see if there are any aspects of their projects that can be enhanced to create a GSoC project. There are also several ideas on the ECE497 class project idea list. You can also check out last year's idea page.

Mentors wondering where to help

Please start by registering your ideas for student projects below by following the template provided with the existing ideas. Furthermore, scroll down to the bottom and give everyone a bit of information about your expertise and availability by adding yourself to the table. Jason will make final approvals for mentor assignments based on if we first get accepted as a mentoring organization and best matching mentor skill sets with student project ideas deemed valuable to the community.

You will also need be invited by an administrator to register on the GSoC site and request to be a mentor for BeagleBoard.org.

General requirements

All projects have the following basic requirements:

  1. Once accepted, the project must be registered on http://beagleboard.org/project.
  2. All newly generated materials must be released under an open source license.
  3. Individual students shall retain copyright on their works.
  4. Source code generated during the project must be released on github.com (to be cloned to github.com/beagleboard on successful completion).
  5. The registration on http://beagleboard.org/project must include an RSS feed with project announcements and updates at every milestone. Sources for the RSS feed should be blogger.com, wordpress.com, or some other established blog-hosting service with known reliability.
  6. To help you to break your project down into manageable chunks and also to help the project's mentors to better support your efforts, weekly project status reports should be e-mailed to the project's mentors and the organization administrator (Jason Kridner). Each status report should outline:
    1. what was accomplished that week,
    2. any issues that prevented that week's goals from being completed and
    3. your goals for the next week.
  7. Students will provide two recorded audio/video presentations uploaded to youtube or vimeo (screencasts are appropriate), one near the beginning of the project summarizing their project goals and another in the wrap-up phase to summarize their accomplishments. Examples can be found on http://beagleboard.org/gsoc.
  8. Students will demonstrate their ability to cross-compile and utilize version control software by creating a "Hello World" application and generating a pull request to https://github.com/jadonk/gsoc-application/tree/master/ExampleEntryJasonKridner. For assistance, please visit http://beagleboard.org/chat or utilize the beagleboard-gsoc Google Group. The "Hello World" application must print your name and the date out in an ARM Linux environment. Freely available emulators may be used to test your application or you can ask anyone on the chat or mailing list to help you test.
  9. All projects will produce reusable software components and will not be "what–I-built-over-my-summer-vacation" projects. Including a hardware component is welcome, but the project *deliverable* will be software that may be utilized by a wide audience of the BeagleBoard.org community.

Idea template

Description

Goal:
Hardware Skills:
Software Skills:
Possible Mentors:
Upstream Repository:
References:

Ideas

Linux kernel support for embedded devices and interfaces

Improving the state of the Linux kernel, especially with regards to embedded devices and interfaces. Includes improved ARM/OMAP/Sitara platform support, simplifying the development of add-on hardware for embedded systems and exchanging hardware connectivity information with userspace.

Improving the BeagleBone low-latency multi-channel audio system

Based on existing hardware from http://www.creative-technologies.de/linux-based-low-latency-multichannel-audio-system-2/

  • Extend driver architecture to Beagle Board X15 (more computational power for more DSP capabilities), including performance test at CPU load conditions, add DSP library to make use of X15's DSPs
  • Create USB Audio Class 1 and/or 2 http://www.linux-usb.org/gadget/ Gadget Kernel Module, and optimizing throughput latency to allow cape to be used as independent PC soundcard
  • Further optimize available driver for BBG for latency, with focus on ASOC driver
  • Make a real-time audio processor box on beaglebone. Needs HD audio cape, could use PRUs for real-time sound processing (ie, guitar input) and second midi source using alsa or hardware cape. Also like to have pitch/envelope-following synth for analog instrument/mic input.

Heterogeneous co-processor support in open source operating systems and libraries

Enabling usage of DSPs, PRUs, FPGAs, Cortex-Ms, Arduinos, MSP430 launchpads and other attached processing platforms.

Process Sensor Data in Real-Time

  • Need a sonic anemometer for open source weather station (use PRUs to calculate sonic velocity and wind components). Needs ultrasonic ping sensors and mounting framework.
  • Port/implement MAV (drone) optical flow or stereo image processing to PRUs, use "Blue" or Black (via BBIO cape) as Ardupilot platform.

Sample PRU code interfacing with other kernel interfaces

Write sample code to demostrate how data to and from the PRU can be exposed via standard user interfaces. Possible samples include:

  • Expose the PRU as a I2C/UART/SPI etc. The would act as a bitbang I2C master interface that other I2C drivers can leverage.
  • Expose data from the PRU as an IIO, input, and/or character device.

The goal is to show the 2 pieces (kernel + PRU firmware) needed to use the PRU as a "normal" HW. Most likely this will have to use the remote proc interface.

Linux userspace support of embedded devices and interfaces in high-level languages

Improving the Bonescript JavaScript library, the PyBBIO Python library, Userspace Arduino, web-based interface libraries, examples or alternatives in other languages.

For PyBBIO this could include support for the latest 4.1 Linux kernel (see 4.1 milestone here), addressing open issues, adding new features and device drivers, etc..

BeagleSat Platform Integration

  • Goal: Integrate BeagleSat "satellite" platform into existing ArduPilot framework, including previous GSoC BeagleSat magnetometer application; BeagleBone blue has most of the required hardware, and black is already a supported hardware platform for ardupilot (via BBMini or Proto capes), however, ArduPilot does not have a satellite vehicle platform (should probably be derived from ArduCopter).
  • Hardware Skills: soldering/prototyping, serial/debug, sensors
  • Software Skills: high-level language skills (Python, C, etc), some knowledge of micro-controller compilers and targets, kernel config/programming (some)
  • Possible Mentors: Steve Arnold, Alexander Hiam
  • Upstream Repository: BeagleSat , BeaglePilot , BBMini
  • References: BeagleBone Blue board features , Building (ardupilot) for BeagleBone Black on Linux , MAVLink Commands

Improving initial experience for novice developers

Improving the methods for communicating how to build projects, improving the out-of-box experience for novices and consolidating support for simplified home manufacturing (CNC, 3D printers, laser cutters, pick-and-place machines, etc.), drones/bots (ROS, IMU, video streaming, etc.) or other common tasks.

SPI Flash Emulator (possibly via PRU)

Often in embedded devices, SPI NOR flash is being used more and more as the main non-volatile memory due to cost and technical abilities, but developing software and firmware for embedded devices which use SPI NOR flash as their main non-volatile memory often results in very slow code-compile-test sequences. This is due to SPI NOR flash's very slow erase and write times even when using a fast programmer like a Dediprog SF100 or Tin Can Tools SPI Hook. Typically, developers will purchase a SPI NOR flash emulator in order to speed development, as programming the emulator's memory can take 1% of the time it takes to program an actual SPI flash part which greatly improves the code-compile-test sequence throughput. However, typical emulators like this often cost upwards of $1000 or more. Creating a lower cost SPI NOR flash emulator which uses the McSPI interface on AM335x or the PRU to handle the physical SPI slave interface and Linux's USB gadget capabilities to load the data from a PC host would result in a much lower cost but high performance SPI NOR flash emulator.

Initial development likely could be done using breadboard circuits without needing any special cape hardware. Development and testing could use a single BBB to act as both the emulator and the target, such as having the emulator portion expose a 64 Mb (8 MB) emulated SPI flash and then have the normal AM335x SPI host port access it as a block device or through spidev. Longer term, special cape hardware could be designed to support level shifting but initial development should not require any special PCB.

Since the McSPI interface on AM335x can only operate at up to 16 MHz in slave mode (even in OPP100, it's slower in OPP50), it will first need to be evaluated if using a PRU is the best course of action or if just using the McSPI interface would be a better choice.

  • Goal: Create a generic SPI slave framework in Linux with McSPI as the first hardware layer and a SPI flash emulator as the first protocol driver.
  • Hardware Skills: General breadboarding with jumper wires.
  • Software Skills: Linux kernel C programming.
  • Possible Mentors: Andrew Bradford
  • Upstream Repository:kernel.org
  • References:

PRU Framebuffer

Like was done before on AM18xx (http://hackaday.com/2012/06/26/offloading-vga-generation-onto-a-coprocessor/) but bring the capability to AM335x. There is value in having a PRU video output system as some newer TI SoC have many PRU but no video output (such as AM5716) and sometimes the way pinouts work for a given design, the normal video output pins on a SoC may not be usable but a PRU may be able to reach usable pins.

  • Goal: PRU firmware which can drive a TTL LCD panel at a single or multiple standard resolutions along with Linux framebuffer driver enablement and communications to the PRU for both sending/receiving messages and sending of image data.
  • Hardware Skills: Ability to jumper wire BBB to an off the shelf TTL LCD panel breakout.
  • Software Skills: Linux kernel driver work.
  • Possible Mentors: Andrew Bradford
  • Upstream Repository: kernel.org
  • References: http://hackaday.com/2012/06/26/offloading-vga-generation-onto-a-coprocessor/

Open-AVB support for BeagleBone

Ethernet AVB is being designed into most next generation automotive audio systems and is starting to be adopted for professional audio environments such as studios. However, most Ethernet AVB stacks are available only as commercial products from competing vendors. The AVNu Alliance, the standards organization for Ethernet AVB, does sponsor the FOSS Open-AVB project (https://github.com/AVnu/Open-AVB). Open-AVB currently only has proof-of-concept support for x86 and the I210 Ethernet NIC. AM335x and AM57xx have the necessary silicon support to support Ethernet AVB.

  • Goal: Development can target two BeagleBones, supporting each in Open-AVB as both talker and listener. The effort will involve abstracting some of the x86 specific code in Open-AVB for ARMv7, enabling Open-AVB framing over CPSW Ethernet, and handling audio sourcing/sinking on each BeagleBone. The end goal is to use gstreamer to pass audio and/or video from a BeagleBone acting as a talker to a BeagleBone acting as a listener while complying with the AVB standards.
  • Hardware Skills: Basic skills in setting up Beaglebones and network cabling.
  • Software Skills: Ability to work in kernel and userspace in C. This will require work both in the AM335x Ethernet driver and the userspace Open-AVB project.
  • Possible Mentors: Matt Porter
  • Upstream Repository: https://git.kernel.org/cgit/ and https://github.com/AVnu/Open-AVB
  • References: https://en.wikipedia.org/wiki/Audio_Video_Bridging

StratchX extension for BoneScript

ScratchX is a graphical programming tool for new programmers. BoneScript provides the ability to directly communicate with the I/O functions of a BeagleBone directly from within the browser. For examples see my presentation on JavaScript tricks. ScratchX provides a fairly simple extension mechanism for which it would be easy to add BoneScript support.

BeagleBone Blue APIs

  • Goal: To create easy-to-use APIs for the hardware on the BeagleBone Blue. This should consist of developing/improving kernel drivers for the on-board sensors, developing a kernel driver for the PRU servo driver, etc., then reimplementing the Strawson APIs to use these kernel drivers. If time allows, APIs could also be implemented in Bonescript and/or PyBBIO.
  • Hardware Skills: Some soldering, prototyping (hooking up and testing motors, etc.)
  • Software Skills: C, Linux kernel drivers, possibly PRU C or assembly, Device Tree
  • Possible Mentors: Alex Hiam, Deepak Karki
  • Upstream Repository: beagleboard/Linux
  • References: Strawson software

BBB-based Serial Terminal Server

Often in embedded development it is valuable to have a serial terminal server which can retain a serial port connection along with buffered past I/O separate from a typical host PC, either for longer term logging of serial port data or to enable remote management of a device via serial port. Commercial units which have this capability are very expensive. The BeagleBones have 4 highly capable UARTs exposed besides UART0 through the cape connectors and a simple cape hardware could easily enable a BeagleBone to physically have all the interfaces needed to be a serial terminal server. The cape hardware does not need to be created for this project to go forward, so long as other devices which connected to the BeagleBone terminal server used 3.3 V UARTs themselves.

This project would begin with a survey of existing software which could be adapted to provide a terminal server experience (for example something as simple as using GNU screen with some adaptations over an SSH connection to the BeagleBone) and then proceed to create software changes needed to enable such operation in an easy to use and deploy way. This resulting (or found) software would likely end up being generic for Linux based serial terminal servers. The end result of this project should likely be an easy to deploy SD card image to enable someone to setup a low cost serial terminal server based on a BeagleBone in only a few minutes.

A reach goal would be to enable the cape hardware and also to potentially provide DC relays which could switch 5-12 V at 2-3 A such that development boards could be powered on and off through the same software interface as is used for the serial communications. Since hardware is not the focus of GSoC, actual development of such hardware should not be the focus of the project itself.

USB support for HelenOS on BeagleBoard XM and BeagleBone computers

Implement HelenOS drivers for the USB host/OTG controllers as found on the BeagleBoard XM and BeagleBone single-board computers that will be part of the HelenOS DDF (Device Driver Framework) and USB stack.

HelenOS is a portable microkernel-based multiserver operating system designed and implemented from scratch. It decomposes key operating system functionality such as file systems, networking, device drivers and graphical user interface into a collection of fine-grained user space components that interact with each other via message passing. A failure or crash of one component does not directly harm others. HelenOS is therefore flexible, modular, extensible, fault tolerant and easy to understand.

HelenOS features basic support for the popular BeagleBoard XM and BeagleBone single-board computers. HelenOS also has its own USB stack, but because BeagleBone uses a non-standard USB host controller and BeagleBoard XM comes with a (sometimes) flaky EHCI host controller, and a non-standard OTG USB controller, HelenOS cannot unfold its full potential on these platforms, where most of the peripherals are meant to be attached via USB (mouse, keyboard, network, etc.).

FlightGear remote Cockpit on BBB

FlightGear is a free and open source cross-platform flight simulator platform or game. It support multiple computer and devices, so that we could build our remote cockpit at home, a example like this.

However, this project will only build a small prototype panel for FlightGear. It will use a small touch screen to display basic instruments for Aircraft - Atitude Indictor, Airspeed, Altitude and Heading, and two virtrual control "handle" for landing gear and flaps. The BBB will proform as a remote control device, it will connect to main flightgear instance FDM via network, and it could also connect to control devices or joystick/pedals as a control center.

On the other hand, when the remote panel is built, it could be used for Quadcopter and ROV remote control in the future.

Previous ideas

Mentors

Name IRC nickname Native language Other languages Timezone Software help Hardware help Focus projects
Jason Kridner jkridner English - US Eastern JavaScript, C, u-boot wiring, timing diagrams, basic debug BoneScript development
Hunyue Yau ds2 English - US Pacific Android, C, Linux, scripting, Kernel schematics, wiring, EE details Kernel/HW
Anuj Deshpande anujdeshpande English - UTC+530 C, Python, Golang Schematics Arduino, Android
Andrew Bradford bradfa English - US Eastern C, Linux, U-Boot KiCad, some RF DSP/PRU/M4 communication from Linux, wifi, USB gadget
Alex Hiam alexhiam English - US Eastern Python, C, programming... schematics, design, debugging, prototyping PRU, high-level userspace stuffs, kernel (device drivers?) X15?
Vladimir Pantelic av500 German English CET C, Android, embedded programming schematics, design, debugging, prototyping kernel, Android, dsp
Robert Manzke rma German English CET C, kernel, audio interfacing schematics, design, debugging, prototyping kernel, audio, dsp
Steve Arnold nerdboy English - PST8PDT Python, kernel/bootloader, OS, sensor interfaces design, debugging, prototyping kernel, sensors/data acquisition/processing
Matt Porter mdp English C :) US Eastern U-Boot, kernel, drivers, upstream, AVB, networking/ipcs Schematic review, part selection, debugging kernel, upstreaming, AVB, automotive
Kumar Abhishek Abhishek_ English, Hindi - IST,+0530 C, Kernel, PRU related, embedded Yes kernel, PRUs, X15
Jakub Jermář jermar Czech English CET everything HelenOS, C, Kernel, embedded basic HelenOS USB drivers for BeagleBone and BeagleBoard XM
Deepak Karki karki_ English Hindi, kannada India (IST) PyBBIO, PRU programming, basic kernel stuff. yes BeagleBone Blue APIs.
Michael Welling m_w English - US Central C, Linux Kernel, U-Boot, BASH KiCad, FPGA, Robotics Kernel, Robotics, FPGA
Tong Hui tonghuix Chinese English UTC+8 C, driver, Embedded Programming. KiCAD, schematics, design, debugging, testing Beaglebone Black, Flightgear
Andrew Henderson hendersa English - US Eastern C/C++, ARM asm, Linux, Linux kernel, Android Prototyping, Eagle PCB BeagleBone Black, Android, Linux userspace multimedia
Chris Simmonds simmondscd English - GMT Android, Linux, U-Boot, kernel, drivers, C, C++, Java Schematics, basic wiring, debugging Android, Hardware support, Real-time
Name IRC nickname Native language Other languages Timezone Software help Hardware help Focus projects

Previous mentors