Difference between revisions of "Beagleboard gsoc 2019 bi-directional progress"

From eLinux.org
Jump to: navigation, search
m (Reference Design For A GPIO-based Parallel Bi-Directional Bus)
m (Important sites)
Line 31: Line 31:
 
* A online to understand kernel structure of beaglebone on the device tree : http://git.ti.com/ti-linux-kernel/ti-linux-3-8-y-kernel/trees/master/arch/arm/boot/dts
 
* A online to understand kernel structure of beaglebone on the device tree : http://git.ti.com/ti-linux-kernel/ti-linux-3-8-y-kernel/trees/master/arch/arm/boot/dts
 
* For using the prussdrv technique in pru programming through asssembly language : https://github.com/hendersa/bes through you have to make couple of changes to get it working.
 
* For using the prussdrv technique in pru programming through asssembly language : https://github.com/hendersa/bes through you have to make couple of changes to get it working.
*      
+
** basic PRU example : https://www.ofitselfso.com/BBBCSIO/Help/BBBCSIOHelp_PRUBlinkUSR3LEDExamplePASMCode.html
  
 
=== Daily progress : ===
 
=== Daily progress : ===

Revision as of 07:33, 9 June 2019

About Me

IRC: pranav_kumar
Github: https://github.com/pranav083
E-Linux Username: pranav083
School: UIET,Panjab University,Chandigarh
Country: India
Primary language: English,Hindi
Typical work hours: 9:30 - 23:00 IST GMT/EST/PST to Adjusted Time
Previous GSoC participation: This is my first time participation in gsoc .I got intrested for it by seeing the vast amount of development for open source hardware around the world .And i also want to become a part of it.
Skills: C,Python,ROS,OpenCV,Embeddded C,Electronics Prototying,circuit designing

Tools(proficient): Git, Linux, C

Experience: C, Python, OpenCV, Arduino

Hardware Skills: Raspberry Pi, ICs, Circuit Designing, Atmel chips, I2C, circuit designing, circuit debugging.

Reference Design For A GPIO-based Parallel Bi-Directional Bus

Project name: Reference Design For A GPIO-based Parallel Bi-Directional Bus

Student: Pranav Kumar
Mentors: Andrew Henderson, Kumar Abhishek, Hunyue Yau
Code: https://github.com/pranav083/pocket_beagle-work
Wiki: https://elinux.org/index.php?title=/BeagleBoard/GSoC/GPIO-parallel-bi-dir-bus

Important sites

Daily progress :

Date : 31 May 2019

  • First I made an introductory youtube video of my project
  • Purchased hardware related to this project like 8-bit logic analyzer ,logic level converter
  • Understand about the code structure on making kernel module Beagleboard and understanding the beaglelogic code docs
  • Read a little bit about kernel module development from this page .

Date : 1 June 2019

  • Till now made the circuit based on the GitHub link withh shift register circuit diagram.
  • Made the circuit for testing the board see the circuit drive link
  • Further work is to implement first user space program then PRU assembly code program.
  • completed studing kernel module developnment from site as suggested by my mentor and further looking into makefile

Date : 2 June 2019

I think i should also include blocker and goals in my further work

  • Till Now
    • Today I studied more about kernel module development and try to understand the code base starting from docs, then kernel folder and firmware folder
    • Try to complete the first week commitment of making the video for the different interfacing circuit but faces some problem due to less understanding assembly code in PRU
    • As i was working earlier in the User space so i was comfortable to make the program their but i want to submit the video and code with the assembly code
  • Blockers:
    • During navigating through the code of beaglelogic .asm file are less understandable for me .
    • Less understaning of the PRU assembly code to tackle that i watched again pru video from beagle bone site.
    • came across a github page during my search for barebone pru programming on pocket_beagle_samples
    • And downloaded the Sitara PRU but it was too big to be understable to me.

Date : 3 June 2019

  • Blocker
    • Building the program was not successful send my issue to my mentor
    • reading the datasheet stated above but very less success with it

Date : 4 June 2019

  • Till Now
    • while waiting for the response from the mentors started to study the assembly guide as found from different websites
    • completed the video training course on the pru programming and its different aspects through : https://training.ti.com/PRU-training-series
    • Setup ccs studio in a hope for running the pru through assembly codes
  • Blocker :
    • Still exploring the right way to program the pru in the beagle bone
    • Compile the code with out the main function and got bus error
    • Though found a way program as stated on most of the sites through the ti ccs studio but it is not the right way to continue

Date : 5 June 2019

  • Till Now
    • Got reply from the mentor and it worked after including main function and by compiling
    • starting every thing from new by re flashing the os image on the beaglebone black wireless
    • unable to install the library from the site : https://github.com/beagleboard/am335x_pru_package
    • Today is the meeting day and led a little discussion on which approach to use prussdrv or remoteproc.
  • Blocker
    • Still dont know how to get the system working through the assembly code and then come through the setup guide of complier form
    • Tried the method again of enabling pru from element14 site

As the project progress a little bit i thing of writing a blog on enabling pru in beagle board as the most of the sources are outdated

Date : 6 June 2019

  • Till Now
    • Changed the uEnv.txt for enabling remotproc pru system in beaglebone
    • Today finally get the pru assembly code working most of thanks to @hendersa guidance
    • Because till now from my side i had searched most of the resources that i can avail from web, beaglebone google group,etc.
    • But learn many things about its working and structure in the mean time .
  • Blocker
    • Most of the earlier problrm that i was facing is over for now now testing to run assembly code.