Difference between revisions of "Jetson TX2"
(→Guides and Tutorials) |
(→Cameras) |
||
(103 intermediate revisions by 14 users not shown) | |||
Line 1: | Line 1: | ||
− | NVIDIA | + | NVIDIA [https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit Jetson TX2] is an embedded system-on-module (SoM) with dual-core NVIDIA Denver2 + quad-core ARM Cortex-A57, 8GB 128-bit LPDDR4 and integrated 256-core Pascal GPU. |
Useful for deploying computer vision and deep learning, Jetson TX2 runs Linux and provides greater than 1TFLOPS of FP16 compute performance in less than 7.5 watts of power. | Useful for deploying computer vision and deep learning, Jetson TX2 runs Linux and provides greater than 1TFLOPS of FP16 compute performance in less than 7.5 watts of power. | ||
− | Jetson TX2 is available as the '''[[#Jetson TX2 Module|module]]''', '''[[#Jetson TX2 Developer Kit|developer kit]]''', and in compatible '''[[#Ecosystem Products|ecosystem]]''' products. See wiki of | + | Jetson TX2 is available as the '''[[#Jetson TX2 Module|module]]''', '''[[#Jetson TX2 Developer Kit|developer kit]]''', and in compatible '''[[#Ecosystem Products|ecosystem]]''' products. See the wiki of other Jetson's '''[[Jetson|here]]''', including the latest [[Jetson AGX Xavier]]. |
{| style="color: black; background-color: #ffffff; width: 600px;" | {| style="color: black; background-color: #ffffff; width: 600px;" | ||
Line 53: | Line 53: | ||
=== Software Support === | === Software Support === | ||
− | <div style="width: | + | <div style="width:40%;column-count:2;-moz-column-count:2;-webkit-column-count:2"> |
− | * [https://developer.nvidia.com/embedded/jetpack JetPack | + | * [https://developer.nvidia.com/embedded/jetpack JetPack 4.2.2] |
− | * [https://developer.nvidia.com/embedded/linux-tegra Linux4Tegra | + | * [https://developer.nvidia.com/embedded/linux-tegra Linux4Tegra R32.2.1] (L4T) |
− | * Linux kernel 4. | + | * Linux kernel 4.9 |
− | * Ubuntu | + | * Ubuntu 18.04 aarch64 |
− | * CUDA Toolkit | + | * [https://developer.nvidia.com/cuda-toolkit CUDA Toolkit] 10.0.326 |
− | * cuDNN | + | * [https://developer.nvidia.com/cudnn cuDNN] 7.5.0 |
− | * [https://developer.nvidia.com/tensorrt TensorRT] | + | * [https://developer.nvidia.com/tensorrt TensorRT] 5.1.6 |
+ | * [https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html TensorFlow] 1.14.0 | ||
* [https://developer.nvidia.com/embedded/visionworks VisionWorks] 1.6 | * [https://developer.nvidia.com/embedded/visionworks VisionWorks] 1.6 | ||
− | * | + | * OpenCV 3.3.1 |
− | * OpenGL 4. | + | * OpenGL 4.6 / OpenGL ES 3.2.5 |
+ | * Vulkan 1.1.1 | ||
+ | * [http://developer.nvidia.com/embedded/dlc/l4t-multimedia-api-reference-32-1 L4T Multimedia API] (Argus 0.97) | ||
+ | * GStreamer 1.14.1 | ||
* V4L2 media controller support | * V4L2 media controller support | ||
− | * | + | * [https://developer.nvidia.com/nsight-systems NVIDIA Nsight Systems] 2019.4 |
− | * [https://developer.nvidia.com/ | + | * [https://developer.nvidia.com/nsight-graphics NVIDIA Nsight Graphics] 2019.2 |
− | * [https://developer.nvidia.com/ | + | * [https://developer.nvidia.com/nsight-compute NVIDIA Nsight Compute] 1.0 |
</div> | </div> | ||
+ | |||
+ | See the '''[[Jetson Zoo]]''' for more software packages to install on top of JetPack. | ||
{| style="color: black; background-color: #ffffff; width: 575px;" | {| style="color: black; background-color: #ffffff; width: 575px;" | ||
Line 76: | Line 82: | ||
{{spaces|1}} <span style="font-family: Trebuchet MS; color: white;">'''Parallel ForAll''' — </span>''[https://devblogs.nvidia.com/parallelforall/jetpack-doubles-jetson-inference-perf/ <span style="font-family: Trebuchet MS; color:white;">JetPack 3.1 Doubles Jetson's Low-Latency Inference Performance</span>]'' | {{spaces|1}} <span style="font-family: Trebuchet MS; color: white;">'''Parallel ForAll''' — </span>''[https://devblogs.nvidia.com/parallelforall/jetpack-doubles-jetson-inference-perf/ <span style="font-family: Trebuchet MS; color:white;">JetPack 3.1 Doubles Jetson's Low-Latency Inference Performance</span>]'' | ||
|} | |} | ||
+ | |||
+ | == Jetson TX2i Module == | ||
+ | |||
+ | [[File:Jetson TX2i Module and TTP 800px.png|600px]] | ||
+ | |||
+ | There's an extended-temperature variant of the TX2 module available called [https://developer.nvidia.com/embedded/buy/jetson-tx2i '''Jetson TX2i'''] that's intended for industrial environments. It has the same processing capabilities as TX2, with a rugged design. | ||
+ | |||
+ | For more info, see the FAQ [https://developer.nvidia.com/embedded/faq#jetson-differences-tx2i "What changes for industrial environments does Jetson TX2i have compared to Jetson TX2?"] | ||
<br /> | <br /> | ||
Line 97: | Line 111: | ||
=== Getting Started === | === Getting Started === | ||
− | * Get the latest development software for PC and | + | * Get the latest development software for PC and TX2 by using '''[https://developer.nvidia.com/embedded/jetpack JetPack]'''.<br /> |
* Plug in an HDMI display into Jetson, attach the antennas and USB keyboard & mouse, and apply power to boot it up. {{spaces|0}} ('''[http://developer.nvidia.com/embedded/dlc/l4t-quick-start-guide-27-1 User Guide]''')<br /> | * Plug in an HDMI display into Jetson, attach the antennas and USB keyboard & mouse, and apply power to boot it up. {{spaces|0}} ('''[http://developer.nvidia.com/embedded/dlc/l4t-quick-start-guide-27-1 User Guide]''')<br /> | ||
* Visit the '''[https://developer.nvidia.com/embedded-computing Embedded Developer Zone]''' and '''[https://devtalk.nvidia.com/default/board/188/jetson-tx2/ Jetson TX2 Developer Forum]''' to access the latest documentation & downloads. | * Visit the '''[https://developer.nvidia.com/embedded-computing Embedded Developer Zone]''' and '''[https://devtalk.nvidia.com/default/board/188/jetson-tx2/ Jetson TX2 Developer Forum]''' to access the latest documentation & downloads. | ||
Line 111: | Line 125: | ||
= Platform Documentation = | = Platform Documentation = | ||
− | NVIDIA has [https://developer.nvidia.com/embedded-computing released] comprehensive documentation and reference designs for the Jetson | + | NVIDIA has [https://developer.nvidia.com/embedded-computing released] comprehensive documentation and reference designs for the Jetson TX2 module and devkit. <br /> |
* '''[https://developer.nvidia.com/embedded/dlc/jetson-tx2-module-datasheet Module Datasheet]''' {{spaces|8}} the official module features, ports, signal pin-out, and package specifications. | * '''[https://developer.nvidia.com/embedded/dlc/jetson-tx2-module-datasheet Module Datasheet]''' {{spaces|8}} the official module features, ports, signal pin-out, and package specifications. | ||
Line 122: | Line 136: | ||
* '''[http://developer.nvidia.com/embedded/dlc/jetson-tx1-tx2-interface-comparison-and-migration TX1/TX2 Migration]''' {{spaces|8}} guide to porting applications and hardware between Jetson TX1 and TX2 | * '''[http://developer.nvidia.com/embedded/dlc/jetson-tx1-tx2-interface-comparison-and-migration TX1/TX2 Migration]''' {{spaces|8}} guide to porting applications and hardware between Jetson TX1 and TX2 | ||
* '''[http://developer.nvidia.com/embedded/dlc/http://developer.nvidia.com/embedded/dlc/jetson-tx1-tx2-module-battery-and-charger-design-guide Battery Charger Guide]''' {{spaces|1}} document for the design of battery charger | * '''[http://developer.nvidia.com/embedded/dlc/http://developer.nvidia.com/embedded/dlc/jetson-tx1-tx2-module-battery-and-charger-design-guide Battery Charger Guide]''' {{spaces|1}} document for the design of battery charger | ||
− | * '''[https://developer.nvidia.com/embedded/dlc/l4t-documentation- | + | * '''[https://developer.nvidia.com/embedded/dlc/parker-series-trm Tegra X2 (Parker) TRM]''' {{spaces|1}} Technical Reference Manual for NVIDIA TX2 system-on-chip and register data. |
− | * '''[ | + | * '''[https://developer.nvidia.com/embedded/dlc/l4t-documentation-28-2 L4T Kernel Docs]''' {{spaces|11}} documentation for L4T kernel developers (including V4L2/camera drivers). |
− | * '''[ | + | * '''[https://developer.nvidia.com/embedded/dlc/l4t-multimedia-api-reference-28-2 Multimedia API Reference]''' {{spaces|8}} documentation to Argus camera API and V4L2 media codecs |
+ | * '''[https://developer.nvidia.com/embedded/dlc/l4t-accelerated-gstreamer-guide-28-2 Accelerated GStreamer Guide]''' {{spaces|1}} example gstreamer pipelines for accessing H.264/H.265 hardware video codec. | ||
Above is a partial list of documents. | Above is a partial list of documents. | ||
Please visit the '''[https://developer.nvidia.com/embedded/downloads#?tx=$product,jetson_tx2 Downloads Center]''' at Embedded Developer Zone for the full list that's currently available.<br /> | Please visit the '''[https://developer.nvidia.com/embedded/downloads#?tx=$product,jetson_tx2 Downloads Center]''' at Embedded Developer Zone for the full list that's currently available.<br /> | ||
− | + | <br /> | |
= Guides and Tutorials = | = Guides and Tutorials = | ||
Line 138: | Line 153: | ||
Please see [http://elinux.org/Jetson_TX1#System_Tools Jetson TX1 Wiki] for similar entries that also apply to TX2. | Please see [http://elinux.org/Jetson_TX1#System_Tools Jetson TX1 Wiki] for similar entries that also apply to TX2. | ||
− | :* [[Jetson/ | + | <div style="width:75%;column-count:2;-moz-column-count:2;-webkit-column-count:2"> |
+ | :* [[Jetson/Clone|Cloning & Restore]] | ||
+ | :* [https://github.com/jtagxhub/jetpack-agx-build Jetson TX2 Build Assistant Scripts] | ||
+ | :* [[Jetson/FAQ/BSP|BSP FAQ]] | ||
+ | :* [https://developer.nvidia.com/embedded/downloads#?search=Factory%20Image Factory Images] | ||
:* [[Jetson/TX2_DTB|Setting the DTB]] | :* [[Jetson/TX2_DTB|Setting the DTB]] | ||
+ | :* [[Jetson/TX2_SPI|Enabling the SPI Port]] | ||
:* [http://www.jetsonhacks.com/2017/03/25/build-kernel-and-modules-nvidia-jetson-tx2/ Building Kernel and Modules] | :* [http://www.jetsonhacks.com/2017/03/25/build-kernel-and-modules-nvidia-jetson-tx2/ Building Kernel and Modules] | ||
:* [[Jetson/TX2_USB|Enabling USB on Custom Carriers]] | :* [[Jetson/TX2_USB|Enabling USB on Custom Carriers]] | ||
:* [[Jetson/TX2_eMMC|Maximizing RootFS Partition on eMMC]] | :* [[Jetson/TX2_eMMC|Maximizing RootFS Partition on eMMC]] | ||
:* [http://www.jetsonhacks.com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/ nvpmodel] - dynamic performance profiles | :* [http://www.jetsonhacks.com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/ nvpmodel] - dynamic performance profiles | ||
+ | :* [https://gist.github.com/JasonAtNvidia/e03e6675849d1d4049b85ea41efb2171 TX2 GPU support in Docker] - script for GPU from within Docker | ||
:* [https://github.com/Technica-Corporation/Tegra-Docker Tegra-Docker] | :* [https://github.com/Technica-Corporation/Tegra-Docker Tegra-Docker] | ||
:* [[Jetson/TX2|Ubuntu Base]] Minimal footprint (500Mb with OS only) using [https://wiki.ubuntu.com/Base Ubuntu Base] | :* [[Jetson/TX2|Ubuntu Base]] Minimal footprint (500Mb with OS only) using [https://wiki.ubuntu.com/Base Ubuntu Base] | ||
:* [http://elinux.org/Boot_from_sd Boot from SD card] | :* [http://elinux.org/Boot_from_sd Boot from SD card] | ||
+ | :* [[Jetson TX2/r28 Display debug|Display Driver Debugging r28]] | ||
+ | :* [https://medium.com/@ynd/getting-swift-to-run-on-nvidia-jetson-tx2-ai-computing-platform-1d9bcd6559dc Getting Swift to Run on TX2] | ||
+ | :* [https://github.com/rbonghi/jetson_easy jetson_easy] - automatic setup/scripting | ||
+ | :* [https://github.com/rbonghi/jetson_stats jetson_stats] - jtop, service and other tools | ||
+ | :* [https://sites.google.com/site/jetsontricks/ v4l2loopback,rtsp,screencapture,misc] | ||
+ | :* [https://devtalk.nvidia.com/default/topic/1057158/jetson-tx2/guide-to-enabling-mcp251x-mcp2515-on-the-tx2-spi-can-/ Enabling MCP2515 SPI-CAN Device] | ||
+ | </div> | ||
+ | |||
+ | === Robotics === | ||
+ | |||
+ | :* [https://github.com/NVIDIA-Jetson NVIDIA Jetson GitHub] {{spaces|10}} (open-source robotics projects with deep learning) | ||
+ | :* [https://github.com/NVIDIA-Jetson/redtail NVIDIA Redtail GitHub] {{spaces|9}} (end-to-end deep learning drone for ROS) | ||
+ | :* [https://developer.nvidia.com/embedded/community/reference-platforms Jetson Reference Platforms] {{spaces|1}} (off-the-shelf robots with TX1/TX2) | ||
+ | :* [[Jetson/FRC_Setup|FIRST FRC Configuration]] {{spaces|8}} (setup guide for FIRST Robotics) | ||
+ | :* [https://www.chiefdelphi.com/media/papers/download/4758 FIRST FRC Neural Networks] (Zebracorns team #900 [https://www.chiefdelphi.com/media/papers/3274 object tracking]) | ||
+ | :* [https://www.chiefdelphi.com/media/papers/download/5169 ROS for FRC Whitepaper] {{spaces|5}} (Zebracorns team #900 Vision [https://github.com/FRC900/2017VisionCode GitHub]) | ||
+ | :* [http://www.jetsonhacks.com/2017/03/27/robot-operating-system-ros-nvidia-jetson-tx2/ Installing ROS Kinetic (TX2)] {{spaces|1}} (JetsonHacks guide) | ||
+ | :* [https://github.com/mit-racecar/particle_filter Fast SLAM Particle Filter] {{spaces|6}} (Accelerated Localization using Raycasting) | ||
+ | :* [http://ardupilot.org/dev/docs/companion-computer-nvidia-tx2.html Connecting Pixhawk and TX2] (Autopilot with MAVLink Interface) | ||
+ | :* [https://github.com/DiegoHerrera1890/Pixhawk-connected-to-Jetson-Tx2-devkit Running MAVROS with TX2 and PixHawk 4] (TX2/ROS setup with MAVLink) | ||
=== Computer Vision === | === Computer Vision === | ||
:* NVIDIA [https://developer.nvidia.com/embedded/learn/tutorials#collapseOne OpenCV 101] - screencast tutorials | :* NVIDIA [https://developer.nvidia.com/embedded/learn/tutorials#collapseOne OpenCV 101] - screencast tutorials | ||
+ | :* [https://github.com/AastaNV/JEP/blob/master/script/install_opencv3.4.0.sh OpenCV-3.4.0 for TX2] building script | ||
:* [http://www.jetsonhacks.com/2017/04/05/build-opencv-nvidia-jetson-tx2/ Build OpenCV for TX2] (JetsonHacks) | :* [http://www.jetsonhacks.com/2017/04/05/build-opencv-nvidia-jetson-tx2/ Build OpenCV for TX2] (JetsonHacks) | ||
:* [http://docs.opencv.org/3.2.0/d6/d15/tutorial_building_tegra_cuda.html Building OpenCV 3.2 with CUDA for Tegra] | :* [http://docs.opencv.org/3.2.0/d6/d15/tutorial_building_tegra_cuda.html Building OpenCV 3.2 with CUDA for Tegra] | ||
:* [https://developer.nvidia.com/embedded/learn/tutorials#collapseVisionWorks VisionWorks training] | :* [https://developer.nvidia.com/embedded/learn/tutorials#collapseVisionWorks VisionWorks training] | ||
− | |||
− | |||
=== Deep Learning === | === Deep Learning === | ||
Line 161: | Line 201: | ||
:* [https://developer.nvidia.com/embedded/twodaystoademo NVIDIA Two Days to a Demo] {{spaces|1}} (DIGITS/TensorRT) | :* [https://developer.nvidia.com/embedded/twodaystoademo NVIDIA Two Days to a Demo] {{spaces|1}} (DIGITS/TensorRT) | ||
:* Caffe {{spaces|1}} (BVLC [https://github.com/BVLC/caffe/wiki/Model-Zoo Model Zoo]) | :* Caffe {{spaces|1}} (BVLC [https://github.com/BVLC/caffe/wiki/Model-Zoo Model Zoo]) | ||
− | :** [https://github.com/ | + | :** [https://github.com/nvidia/caffe NVcaffe FP16] {{spaces|1}} ([https://github.com/dusty-nv/jetson-inference/blob/master/docs/building-nvcaffe.md Install Guide]) |
:** [http://www.jetsonhacks.com/2017/03/24/caffe-deep-learning-framework-nvidia-jetson-tx2/ Caffe Installation] {{spaces|1}} (JetsonHacks) | :** [http://www.jetsonhacks.com/2017/03/24/caffe-deep-learning-framework-nvidia-jetson-tx2/ Caffe Installation] {{spaces|1}} (JetsonHacks) | ||
:* Caffe2 {{spaces|1}} ([https://github.com/caffe2/caffe2 github.com/caffe2]) | :* Caffe2 {{spaces|1}} ([https://github.com/caffe2/caffe2 github.com/caffe2]) | ||
:* [https://github.com/chitoku/installDeepvizJetson Deep Visualization Toolbox] install script | :* [https://github.com/chitoku/installDeepvizJetson Deep Visualization Toolbox] install script | ||
+ | :* [https://github.com/peterlee0127/tensorflow-tx2 TensorFlow] install for JetPack 3.1 | ||
+ | :* [http://www.jetsonhacks.com/2017/04/02/tensorflow-on-nvidia-jetson-tx2-development-kit/ TensorFlow] post for JetPack 3.0 {{spaces|1}} (JetsonHacks) | ||
:* [https://syed-ahmed.gitbooks.io/nvidia-jetson-tx2-recipes/content/first-question.html TensorFlow] install procedure {{spaces|1}} ([https://devtalk.nvidia.com/default/topic/1000717/jetson-tx2/tensorflow-on-jetson-tx2/post/5112792/#5112792 pip wheel]) | :* [https://syed-ahmed.gitbooks.io/nvidia-jetson-tx2-recipes/content/first-question.html TensorFlow] install procedure {{spaces|1}} ([https://devtalk.nvidia.com/default/topic/1000717/jetson-tx2/tensorflow-on-jetson-tx2/post/5112792/#5112792 pip wheel]) | ||
− | :* [ | + | :* [https://developer.ridgerun.com/wiki/index.php?title=GstInference RidgeRun's GstInference] |
+ | :* [https://developer.ridgerun.com/wiki/index.php?title=R2Inference RidgeRun's R2Inference] | ||
+ | :* [https://github.com/AastaNV/JEP/tree/master/script/TensorFlow_1.6 TensorFlow] script and pip wheel for JetPack 3.2 DP | ||
:* [https://github.com/dusty-nv/jetson-reinforcement/blob/master/CMakePreBuild.sh Torch7] {{spaces|1}} install script | :* [https://github.com/dusty-nv/jetson-reinforcement/blob/master/CMakePreBuild.sh Torch7] {{spaces|1}} install script | ||
:* [https://gist.github.com/dusty-nv/ef2b372301c00c0a9d3203e42fd83426 pyTorch] {{spaces|0}} install script | :* [https://gist.github.com/dusty-nv/ef2b372301c00c0a9d3203e42fd83426 pyTorch] {{spaces|0}} install script | ||
:* [http://github.com/dusty-nv dusty-nv's Jetson GitHub] {{spaces|3}} [http://github.com/dusty-nv/jetson-inference jetson-inference] {{spaces|2}} [http://github.com/dusty-nv/jetson-inference jetson-reinforcement] | :* [http://github.com/dusty-nv dusty-nv's Jetson GitHub] {{spaces|3}} [http://github.com/dusty-nv/jetson-inference jetson-inference] {{spaces|2}} [http://github.com/dusty-nv/jetson-inference jetson-reinforcement] | ||
:* [https://github.com/Abaco-Systems/jetson-inference-gv jetson-inference-gv] GigEVision / RTP streaming video (Ross Newman) | :* [https://github.com/Abaco-Systems/jetson-inference-gv jetson-inference-gv] GigEVision / RTP streaming video (Ross Newman) | ||
− | :* [https://github.com/S4WRXTTCS/jetson-inference jetson-inference-cards] playing card recognition by S4WRXTTCS | + | :* [https://github.com/S4WRXTTCS/jetson-inference jetson-inference-cards] {{spaces|1}} (playing card recognition by S4WRXTTCS) |
− | </div><br /> | + | :* [https://github.com/AastaNV/Face-Recognition face-recognition] {{spaces|0}} (face detection with TensorRT plugin API by AastaNV) |
+ | :* [https://github.com/NVIDIA-Jetson/JEP_ChatBot ChatBot] {{spaces|2}} (TensorFlow→TensorRT inferencing workflow by AastaNV) | ||
+ | :* [https://github.com/NVIDIA-Jetson NVIDIA GitHub] {{spaces|2}} (open-source robotics/DL projects) | ||
+ | :* [https://github.com/NVIDIA-Jetson/redtail NVIDIA Redtail] {{spaces|2}} (end-to-end deep learning drone for ROS) | ||
+ | :* Training a Fish Detector with DetectNet {{spaces|1}} [https://jkjung-avt.github.io/fisheries-dataset/ part 1] [https://jkjung-avt.github.io/detectnet-training/ part 2] {{spaces|1}} (jkjung) | ||
+ | :* [https://heyjetson.com/ Hey, Jetson!] {{spaces|2}} (Automatic Speech Recognition using CNN/RNN) | ||
+ | </div> | ||
+ | |||
+ | === Multimedia === | ||
+ | * [https://developer.ridgerun.com/wiki/index.php?title=Xavier/GStreamer_Pipelines Gstreamer Pipelines for AGX Xavier] | ||
+ | * [https://developer.ridgerun.com/wiki/index.php?title=GstInterpipe RidgeRun's GstInterpipe] (GStreamer plug-in for communication between two or more independent pipelines) | ||
+ | * [https://developer.ridgerun.com/wiki/index.php?title=GstWebRTC RidgeRun's GstRRWebRTC] (GStreamer plug-in that turns pipelines into WebRTC compliant endpoints) | ||
+ | * [https://developer.ridgerun.com/wiki/index.php?title=GstRtspSink RidgeRun's GstRTSPSink] (GStreamer element for high performance streaming to multiple computers using the RTSP/RTP protocols) | ||
+ | * [https://developer.ridgerun.com/wiki/index.php?title=GStreamer_Daemon RidgeRun's Gstreamer Daemon - GstD] (GStreamer framework for controlling audio and video streaming using TCP connection messages) | ||
+ | * [http://developer.ridgerun.com/wiki/index.php?title=GstCUDA RidgeRun's GstCUDA] (RidgeRun CUDA ZeroCopy for GStreamer) | ||
+ | * [https://developer.ridgerun.com/wiki/index.php?title=GStreamer_Pan_Tilt_Zoom_and_Rotate_Element RidgerRun's GstPTZR] (GStreamer Pan Tilt Zoom and Rotate Element) | ||
+ | * [https://developer.ridgerun.com/wiki/index.php?title=GStreamer_Color_Transfer RidgeRun's GstColorTransfer] (GStreamer plug-in that transfers the color scheme from a reference to a target image) | ||
+ | |||
+ | === Camera Info === | ||
+ | *USB3 - e-con Systems' [https://www.e-consystems.com/4k-usb-camera.asp See3CAM_CU135] was tested on Jetson TX2 with HD (1280X720) @ 46fps and FullHD (1920x1080) @ 36fps in MJPEG (compressed) format, as well as [https://elinux.org/Jetson/Cameras#USB_3.0_webcams_known_to_be_working other settings]. | ||
+ | *CSI-2 - [https://www.e-consystems.com/multiple-csi-cameras-for-nvidia-jetson-tx2.asp 6 MIPI CSI-2 Cameras] support for Jetson TX2 from e-con Systems | ||
+ | *CSI-2 - [https://www.e-consystems.com/three-synchronized-4k-cameras-for-nvidia-jetson-tx2.asp 3 MIPI CSI-2 Cameras] support for Jetson TX2 from e-con Systems | ||
+ | |||
+ | === V4L2 drivers for cameras === | ||
+ | |||
+ | *RidgeRun has a [https://developer.ridgerun.com/wiki/index.php?title=V4L2_drivers_available_for_Jetson_SoCs list of drivers already supported in Jetson], please check if the driver that you need is already there. Otherwise, RidgeRun offers [https://developer.ridgerun.com/wiki/index.php?title=V4L2_driver_for_camera_sensor_or_capture_chip services to create the driver for you] | ||
+ | |||
+ | === Design FAQs === | ||
+ | |||
+ | There are some useful FAQs for Jetson TX2 design, link is [[Jetson_TX2/FAQ|here]]. | ||
+ | <br /> | ||
+ | <br /> | ||
= Ecosystem Products = | = Ecosystem Products = | ||
− | The following are 3rd-party carriers, enclosures, | + | The following are 3rd-party carriers, enclosures, expansion boards, and accessories available for Jetson TX2. |
+ | |||
+ | For the latest list of TX2 compatible products, please visit the Jetson Ecosystem [https://developer.nvidia.com/EMBEDDED/jetson-partner-supported-cameras?t1_supported-jetson-products=TX2 Supported Cameras] and [https://developer.nvidia.com/embedded/community/jetson-partner-products?t1_supported-jetson=TX2 Carrier Boards and Production Systems] pages. | ||
Please see additional backwards-compatible [[Jetson_TX1#Ecosystem_Products|Ecosystem Products for TX1]]. | Please see additional backwards-compatible [[Jetson_TX1#Ecosystem_Products|Ecosystem Products for TX1]]. | ||
<br /> | <br /> | ||
− | + | === Cameras === | |
+ | * Stereolabs ZED Sensors | ||
+ | ** Stereolabs [https://www.stereolabs.com/zed-2i/ Zed 2i RGB Camera] ( 2.2K resolution, Up to a 120° Wide-angle field of view, IP66 certified, Up to 35m Depth Range, Full Compatibility with Nvidia Orin/Jetson Xavier NX/AGX/TX2/Nano) | ||
+ | ** Stereolabs [https://www.stereolabs.com/zed-2/ Zed 2 RGB Camera] ( 2.2K resolution, Up to a 120° Wide-angle field of view, Up to 20m Depth Range, Full Compatibility with Nvidia Orin/Jetson Xavier NX/AGX/TX2/Nano) | ||
+ | ** Stereolabs [https://www.stereolabs.com/zed-mini/ Zed Mini RGB Camera] ( 2.2K resolution, Up to a 90° Wide-angle field of view, Up to 15m Depth Range, Full Compatibility with Nvidia Orin/Jetson Xavier NX/AGX/TX2/Nano, Specially designed for AR/VR Applications) | ||
+ | |||
+ | :* e-con Systems™ [https://www.e-consystems.com/nvidia-jetson-camera.asp#jetson-tx2-tx1-cameras NVIDIA Jetson TX2 cameras] | ||
+ | :** SmarteCAM [https://www.e-consystems.com/smart-camera.asp IP66 rated ready-to-deploy artificial intelligence smart camera] with powerful AI processing capabilities with an onboard NVIDIA Jetson TX2 CPU and 256 core GPU which can perform all image processing and analytics indigenously without the connectivity or power of cloud | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/nvidia-cameras/jetson-agx-xavier-cameras/stereo-camera.asp 3D MIPI Stereo camera for NVIDIA® Jetson AGX Xavier™/TX2] | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/13mp-autofocus-nvidia-jetson-tx2-camera-board.asp 13MP AR1335 AF MIPI Jetson TX1/TX2 Camera] | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/3d-usb-stereo-camera-with-nvidia-accelerated-sdk.asp USB Stereo Camera for NVIDIA® Jetson AGX Xavier™/TX2] | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/2MP-HDR-Jetson-TX2-TX1-Camera-Board.asp 2MP AR0230AT MIPI Jetson TX1/TX2 Camera] | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/jetson-tx2-ultra-low-light-camera-board.asp 2MP SONY IMX290 MIPI Jetson TX1/TX2 Camera] | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/13mp-nvidia-jetson-tx2-camera-board.asp 13MP AR1335 MIPI Jetson TX1/TX2 Camera] | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/autofocus-liquid-lens-nvidia-jetson-tx2-camera.asp 3.4 MP AF AR0330 MIPI Jetson TX1/TX2 Camera] | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/13mp-nvidia-jetson-tx1-camera-board.asp 13MP AR1820 MIPI Jetson TX1/TX2 Camera] | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/3MP-Jetson-TX1-Camera-board.asp 3.4 MP AR0330 MIPI Jetson TX1/TX2 Camera] | ||
+ | :** e-con Systems™ [https://www.e-consystems.com/gmsl-camera-for-nvidia-jetson-tx2.asp 3.4 MP AR0330 GMSL MIPI Jetson TX1/TX2 Camera] | ||
+ | |||
+ | :* Allied Vision MIPI CSI-2 (one open-source CSI-2 driver for all cameras on [https://github.com/alliedvision/linux_nvidia_jetson Github.com]) | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1500%20C-050.html Alvium 1500 C-050] 0.5MP PYTHON 480 | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1500%20C-120.html Alvium 1500 C-120] 1.2MP AR0135CS | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1500%20C-210.html Alvium 1500 C-210] 2.1MP AR0521 | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1500%20C-500.html Alvium 1500 C-500] 5MP AR0521 | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1800%20C-040.html Alvium 1800 C-040] 0.4MP Sony IMX287 | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1800%20C-158.html Alvium 1800 C-158] 1.6MP Sony IMX273 | ||
+ | :* Allied Vision USB3 Vision | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1800%20U-040.html Alvium 1800 U-040] 0.4MP Sony IMX287 | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1800%20U-050.html Alvium 1800 U-050] 0.5MP PYTHON 480 | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1800%20U-120.html Alvium 1800 U-120] 1.2MP AR0135CS | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1800%20U-158.html Alvium 1800 U-158] 1.6MP Sony IMX273 | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1800%20U-500.html Alvium 1800 U-500] 5MP AR0521 | ||
+ | :** [https://www.alliedvision.com/en/products/embedded-vision-cameras/detail/Alvium/1800%20U-501m%20NIR.html Alvium 1800 U-501m NIR] 5MP AR0522 | ||
+ | :* APPROPHO [http://www.appropho.com/products_en.html?type=36 TX1/TX2 Camera Solutions] | ||
+ | :* DCDZ(冬虫电子) [[Jetson/xcb-lite| XCB-OV5640 ]] OV5640 M12 lens camera | ||
+ | :* DCDZ(冬虫电子) [[Jetson/xcb-lite| XCB-OV5693 ]] OV5693 camera | ||
+ | :* DCDZ(冬虫电子) [[Jetson/xcb-lite| XCB-H2C ]] HDMI to CSI2 board | ||
+ | :* DCDZ(冬虫电子) [[Jetson/xcb-lite| XCB-H2C4K ]] HDMI to CSI2 4K board | ||
+ | :* DCDZ(冬虫电子) [[Jetson/xcb-lite| XCB-SDI ]] SDI to CSI2 board | ||
+ | :* DCDZ(冬虫电子) [[Jetson/xcb-lite| XCB-8eyes ]] 4 or 8 cameras ADAS expansion board | ||
+ | |||
+ | :* Leopard Imaging [https://leopardimaging.com/product-category/nvidia-jetson-cameras/nvidia-tx1tx2-mipi-camera-kits/csi-2-mipi-cameras/ TX1/TX2 camera kits] | ||
+ | :* Stereolabs [https://www.stereolabs.com/ ZED] (stereo camera) | ||
+ | |||
+ | === Carriers === | ||
+ | |||
:* Aetina [http://www.aetina.com.tw/wp-content/uploads/2017/04/eDM_ACE-N620_carrier/index.html N620] nano-ITX carrier | :* Aetina [http://www.aetina.com.tw/wp-content/uploads/2017/04/eDM_ACE-N620_carrier/index.html N620] nano-ITX carrier | ||
− | |||
:* Auvidea [https://auvidea.com/j100/ J100] carrier | :* Auvidea [https://auvidea.com/j100/ J100] carrier | ||
:* Auvidea [https://auvidea.com/j106/ J106] carrier (6 camera) | :* Auvidea [https://auvidea.com/j106/ J106] carrier (6 camera) | ||
Line 191: | Line 312: | ||
:* Auvidea [https://auvidea.com/j150/ J150] OpenGear blade | :* Auvidea [https://auvidea.com/j150/ J150] OpenGear blade | ||
:* Auvidea [http://www.auvidea.eu/index.php/2015-11-08-08-01-27/2016-02-03-12-30-02/j200-dual-jetson-tx1-carrier J200] carrier | :* Auvidea [http://www.auvidea.eu/index.php/2015-11-08-08-01-27/2016-02-03-12-30-02/j200-dual-jetson-tx1-carrier J200] carrier | ||
+ | :* Avermedia [https://www.avermedia.com/professional/product/ex731_aa_n1/overview EX731-AA] carrier | ||
+ | :* Avermedia [https://www.avermedia.com/professional/product/ex713_aa/overview EX713-AA] carrier | ||
+ | :* Bluetechnix [https://www.bluetechnix.com/en/products/multi-tof-platform/product/multi-tof-platform/ Multi-ToF platform] | ||
:* ConnectTech [http://www.connecttech.com/sub/Products/ASG008.asp?l1=GPU&l2=ASG008 Sprocket] carrier | :* ConnectTech [http://www.connecttech.com/sub/Products/ASG008.asp?l1=GPU&l2=ASG008 Sprocket] carrier | ||
:* ConnectTech [http://www.connecttech.com/sub/Products/ASG003.asp?l1=GPU&l2=ASG003 Orbitty] carrier | :* ConnectTech [http://www.connecttech.com/sub/Products/ASG003.asp?l1=GPU&l2=ASG003 Orbitty] carrier | ||
:* ConnectTech [http://www.connecttech.com/sub/Products/ASG006.asp?l1=GPU&l2=ASG006 Spacely] carrier | :* ConnectTech [http://www.connecttech.com/sub/Products/ASG006.asp?l1=GPU&l2=ASG006 Spacely] carrier | ||
:* ConnectTech [http://www.connecttech.com/sub/Products/ASG007.asp?l1=GPU&l2=ASG007 Cogswell] carrier | :* ConnectTech [http://www.connecttech.com/sub/Products/ASG007.asp?l1=GPU&l2=ASG007 Cogswell] carrier | ||
+ | :* ConnectTech [http://www.connecttech.com/sub/Products/ASG002.asp?l1=GPU&l2=ASG002 Elroy] carrier | ||
+ | :* ConnectTech [http://connecttech.com/sub/Products/VPG003_GraphiteVPXTX1.asp?l1=GPU&l2=VPXTX1 3U VPX] card | ||
+ | :* DCDZ(冬虫电子) [[Jetson/xcb-lite| XCB-Lite carrier]] with eDP, CSI, DSI, MicroHDMI etc | ||
+ | :* Gumstix [https://store.gumstix.com/aerocore2-for-nvidia-jetson.html Aerocore2] drone carrier | ||
+ | :* Realtimes [http://www.realtimes.cn/en/product/9001.html RTSO-9001] carrier | ||
+ | :* Realtimes [http://www.realtimes.cn/en/product/RTSO9002.html RTSO-9002] carrier | ||
+ | :* Realtimes [http://www.realtimes.cn/en/product/rtso-9003.html RTSO-9003] carrier | ||
+ | :* Realtimes [http://www.realtimes.cn/en/product/products-8-55.html RTSS-Z5O3U] enclosure | ||
+ | |||
+ | === Enclosures === | ||
+ | |||
+ | :* Aaeon [http://www.aaeon.com/en/p/fanless-embedded-computers-boxer-8120ai BOXER-8120AI] enclosure | ||
+ | :* Abaco [https://www.abaco.com/products/gvc1000 GVC1000] enclosure | ||
+ | :* ADLINK [https://www.adlinktech.com/Products/Deep_Learning_Accelerator_Platform_and_Server/Inference_Platform/DLAP-201-JT2?lang=en DLAP-201-JT2] enclosure | ||
+ | :* Advantech [https://www.advantech.com/products/9140b94e-bcfa-4aa4-8df2-1145026ad613/mic-7200/mod_19d7f198-a3f3-4975-ac87-e8facd1045b3 MIC-720AI] enclosure | ||
+ | :* Axiomtek [http://www.axiomtek.com/Default.aspx?MenuId=Products&FunctionId=ProductView&ItemId=24544&upcat=144&C=eBOX560-900-FL#/ eBOX560-900-FL] | ||
:* ConnectTech [http://www.connecttech.com/sub/Products/ESG501.asp?l1=GPU&l2=ESG501 Rosie] enclosure | :* ConnectTech [http://www.connecttech.com/sub/Products/ESG501.asp?l1=GPU&l2=ESG501 Rosie] enclosure | ||
− | |||
:* ConnectTech [http://connecttech.com/sub/Products/ESG503.asp?l1=GPU&l2=ESG503 Rudi] enclosure | :* ConnectTech [http://connecttech.com/sub/Products/ESG503.asp?l1=GPU&l2=ESG503 Rudi] enclosure | ||
:* ConnectTech [http://www.connecttech.com/sub/Products/ASG001.asp?l1=GPU&l2=ASG001 Astro] carrier | :* ConnectTech [http://www.connecttech.com/sub/Products/ASG001.asp?l1=GPU&l2=ASG001 Astro] carrier | ||
− | :* | + | :* Curtiss-Wright [https://www.curtisswrightds.com/products/electronic-systems/rugged-mission-computing/duracor-mission-computers/duracor-312.html Parvus DuraCor-312] rugged enclosure |
− | :* | + | :* MiiVii [https://en.miivii.com/index.php?s=index/category/index&id=107 S2] enclosure |
− | :* | + | :* MiiVii [https://en.miivii.com/index.php?s=index/category/index&id=106 EVO TX2] enclosure |
− | :* | + | :* MiiVii [https://en.miivii.com/index.php?s=index/category/index&id=143 EVO TX2 GMSL2] enclosure |
− | :* | + | :* RapidProto [https://www.hazcam.io/collections/hazcam-kits/products/jetson-tx1-and-tx2-aluminium-enclosure Aluminum enclosure] |
− | :* | + | :* Rebotnix [https://rebotnix.com/product/gustav/ GUSTAV] enclosure |
− | :* | + | :* Silverstone [http://www.phoronix.com/scan.php?page=article&item=silverstone-pt13-mini&num=2 PT13] mini-ITX system |
− | :* [http:// | + | :* SMP Robotics [https://smprobotics.com/technology_autonomous_mobile_robot/video_analytics_security_system/ T9 System] enclosure |
− | + | :* Syslogic [https://www.syslogic.de/eng/ki-embedded-system-94630.shtml?parentPageId=94706 IPC/COMPACTA-2] TX2i enclosure | |
+ | :* Syslogic [https://www.syslogic.de/eng/deep-learning-rail-computer-92161.shtml IPC/COMPACTA-2] TX2i enclosure (railway system) | ||
+ | :* Syslogic [https://www.syslogic.de/eng/ai-rugged-computer-jetson-tx2-99518.shtml?parentPageId=100092 RPC/COMPACTA-2] TX2i enclosure (IP67) | ||
+ | :* [https://www.vision4ce.com/wp-content/uploads/2017/09/CHARM-100-170801.pdf Vision4CE CHARM-100] enclosure | ||
+ | |||
+ | === Expansion Boards === | ||
+ | |||
+ | :* Auvidea [http://auvidea.eu/j20/ J20] 6-camera module | ||
+ | :* DCDZ(冬虫电子) [[Jetson/xcb-lite| XCB-AUDIO ]] Sound card expansion board | ||
+ | :* DCDZ(冬虫电子) [[Jetson/xcb-lite| XCB-DSPK ]] Digital speaker and MIC expansion board | ||
+ | :* [[BeadaPanel#BeadaPanel_for_NVIDIA_Jetson_Dev._Board|BeadaPanel USB Display+WiFi+Storage 3-In-1 Companion Kit]] | ||
+ | |||
+ | === Other === | ||
+ | |||
+ | :* Aeryon [https://www.aeryon.com/skyranger/r80/ SkyRanger R80] drone | ||
+ | :* [http://black.ai black.ai] perception platform | ||
+ | :* RidgeRun [https://developer.ridgerun.com/wiki/index.php?title=Tegra_X2_or_TX2 GStreamer and Multimedia Solutions] | ||
+ | :* [https://www.skydio.com/ Skydio 2] drone | ||
+ | |||
<br /> | <br /> | ||
Latest revision as of 05:36, 6 April 2022
NVIDIA Jetson TX2 is an embedded system-on-module (SoM) with dual-core NVIDIA Denver2 + quad-core ARM Cortex-A57, 8GB 128-bit LPDDR4 and integrated 256-core Pascal GPU.
Useful for deploying computer vision and deep learning, Jetson TX2 runs Linux and provides greater than 1TFLOPS of FP16 compute performance in less than 7.5 watts of power.
Jetson TX2 is available as the module, developer kit, and in compatible ecosystem products. See the wiki of other Jetson's here, including the latest Jetson AGX Xavier.
Parallel ForAll — NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge |
Contents
Jetson TX2 Module
The Jetson TX2 module contains all the active processing components. The ports are broken out through a carrier board.
Below is a partial list of the module's features. Please see the Jetson TX2 Module Datasheet for the complete specifications.
Processing Components
- dual-core NVIDIA Denver2 + quad-core ARM Cortex-A57
- 256-core Pascal GPU
- 8GB LPDDR4, 128-bit interface
- 32GB eMMC
- 4kp60 H.264/H.265 encoder & decoder
- Dual ISPs (Image Signal Processors)
- 1.4 gigapixel/sec MIPI CSI camera ingest
Ports & Peripherals
- HDMI 2.0
- 802.11a/b/g/n/ac 2×2 867Mbps WiFi
- Bluetooth 4.1
- USB3, USB2
- 10/100/1000 BASE-T Ethernet
- 12 lanes MIPI CSI 2.0, 2.5 Gb/sec per lane
- PCIe gen 2.0, 1×4 + 1×1 or 2×1 + 1×2
- SATA, SDcard
- dual CAN bus
- UART, SPI, I2C, I2S, GPIOs
Form-Factor
- 400-pin Samtec board-to-board connector
- dimensions: 50x87mm (1.96" x 3.42")
- Thermal Transfer Plate (TTP), -25C to 80C operating temperature
- mass: 85 grams, including TTP
- 5.5-19.6VDC input power (consuming 7.5W under typical load)
Software Support
- JetPack 4.2.2
- Linux4Tegra R32.2.1 (L4T)
- Linux kernel 4.9
- Ubuntu 18.04 aarch64
- CUDA Toolkit 10.0.326
- cuDNN 7.5.0
- TensorRT 5.1.6
- TensorFlow 1.14.0
- VisionWorks 1.6
- OpenCV 3.3.1
- OpenGL 4.6 / OpenGL ES 3.2.5
- Vulkan 1.1.1
- L4T Multimedia API (Argus 0.97)
- GStreamer 1.14.1
- V4L2 media controller support
- NVIDIA Nsight Systems 2019.4
- NVIDIA Nsight Graphics 2019.2
- NVIDIA Nsight Compute 1.0
See the Jetson Zoo for more software packages to install on top of JetPack.
Parallel ForAll — JetPack 3.1 Doubles Jetson's Low-Latency Inference Performance |
Jetson TX2i Module
There's an extended-temperature variant of the TX2 module available called Jetson TX2i that's intended for industrial environments. It has the same processing capabilities as TX2, with a rugged design.
For more info, see the FAQ "What changes for industrial environments does Jetson TX2i have compared to Jetson TX2?"
Jetson TX2 Developer Kit
The Jetson TX2 Developer Kit bundles together all the parts to get started, including:
What's Included
- mini-ITX Reference carrier board
- Jetson TX2 Module
- fan and heatsink (pre-assembled)
- 5MP CSI camera module (with Omnivision OV5693)
- WiFi/BT antennas
- USB OTG adapter
- 19VDC Power brick
- AC Power cable
The design files for the reference carrier board and camera module are freely available for download.
Getting Started
- Get the latest development software for PC and TX2 by using JetPack.
- Plug in an HDMI display into Jetson, attach the antennas and USB keyboard & mouse, and apply power to boot it up. (User Guide)
- Visit the Embedded Developer Zone and Jetson TX2 Developer Forum to access the latest documentation & downloads.
Availability
- The devkit is available through NVIDIA's Jetson TX2 Developer Kit webpage.
- The individual module is available through NVIDIA's Jetson TX2 Module webpage.
- Alternatively, use the Region Selector to find distributors of the devkit in your region.
- There's also an Academic Discount available for those affiliated with an educational organization.
Platform Documentation
NVIDIA has released comprehensive documentation and reference designs for the Jetson TX2 module and devkit.
- Module Datasheet the official module features, ports, signal pin-out, and package specifications.
- Design Guide detailed technical design and layout information for creating OEM products.
- DevKit Carrier Spec design info about the reference carrier board from the devkit.
- DevKit Design Files schematics, layout, and design files for the devkit reference carrier board.
- DevKit CAD Models 3D STEP file for reference carrier board, heatsink, camera board, and module.
- Camera Design Files schematics, layout, and design files for the devkit MIPI CSI-2 camera module.
- Thermal Design Guide mechanical specifications for designing active and passive cooling solutions.
- TX1/TX2 Migration guide to porting applications and hardware between Jetson TX1 and TX2
- Battery Charger Guide document for the design of battery charger
- Tegra X2 (Parker) TRM Technical Reference Manual for NVIDIA TX2 system-on-chip and register data.
- L4T Kernel Docs documentation for L4T kernel developers (including V4L2/camera drivers).
- Multimedia API Reference documentation to Argus camera API and V4L2 media codecs
- Accelerated GStreamer Guide example gstreamer pipelines for accessing H.264/H.265 hardware video codec.
Above is a partial list of documents.
Please visit the Downloads Center at Embedded Developer Zone for the full list that's currently available.
Guides and Tutorials
This section contains recipes for following along on Jetson.
System Tools
Please see Jetson TX1 Wiki for similar entries that also apply to TX2.
- Cloning & Restore
- Jetson TX2 Build Assistant Scripts
- BSP FAQ
- Factory Images
- Setting the DTB
- Enabling the SPI Port
- Building Kernel and Modules
- Enabling USB on Custom Carriers
- Maximizing RootFS Partition on eMMC
- nvpmodel - dynamic performance profiles
- TX2 GPU support in Docker - script for GPU from within Docker
- Tegra-Docker
- Ubuntu Base Minimal footprint (500Mb with OS only) using Ubuntu Base
- Boot from SD card
- Display Driver Debugging r28
- Getting Swift to Run on TX2
- jetson_easy - automatic setup/scripting
- jetson_stats - jtop, service and other tools
- v4l2loopback,rtsp,screencapture,misc
- Enabling MCP2515 SPI-CAN Device
Robotics
- NVIDIA Jetson GitHub (open-source robotics projects with deep learning)
- NVIDIA Redtail GitHub (end-to-end deep learning drone for ROS)
- Jetson Reference Platforms (off-the-shelf robots with TX1/TX2)
- FIRST FRC Configuration (setup guide for FIRST Robotics)
- FIRST FRC Neural Networks (Zebracorns team #900 object tracking)
- ROS for FRC Whitepaper (Zebracorns team #900 Vision GitHub)
- Installing ROS Kinetic (TX2) (JetsonHacks guide)
- Fast SLAM Particle Filter (Accelerated Localization using Raycasting)
- Connecting Pixhawk and TX2 (Autopilot with MAVLink Interface)
- Running MAVROS with TX2 and PixHawk 4 (TX2/ROS setup with MAVLink)
Computer Vision
- NVIDIA OpenCV 101 - screencast tutorials
- OpenCV-3.4.0 for TX2 building script
- Build OpenCV for TX2 (JetsonHacks)
- Building OpenCV 3.2 with CUDA for Tegra
- VisionWorks training
Deep Learning
- NVIDIA Two Days to a Demo (DIGITS/TensorRT)
- Caffe (BVLC Model Zoo)
- NVcaffe FP16 (Install Guide)
- Caffe Installation (JetsonHacks)
- Caffe2 (github.com/caffe2)
- Deep Visualization Toolbox install script
- TensorFlow install for JetPack 3.1
- TensorFlow post for JetPack 3.0 (JetsonHacks)
- TensorFlow install procedure (pip wheel)
- RidgeRun's GstInference
- RidgeRun's R2Inference
- TensorFlow script and pip wheel for JetPack 3.2 DP
- Torch7 install script
- pyTorch install script
- dusty-nv's Jetson GitHub jetson-inference jetson-reinforcement
- jetson-inference-gv GigEVision / RTP streaming video (Ross Newman)
- jetson-inference-cards (playing card recognition by S4WRXTTCS)
- face-recognition (face detection with TensorRT plugin API by AastaNV)
- ChatBot (TensorFlow→TensorRT inferencing workflow by AastaNV)
- NVIDIA GitHub (open-source robotics/DL projects)
- NVIDIA Redtail (end-to-end deep learning drone for ROS)
- Training a Fish Detector with DetectNet part 1 part 2 (jkjung)
- Hey, Jetson! (Automatic Speech Recognition using CNN/RNN)
Multimedia
- Gstreamer Pipelines for AGX Xavier
- RidgeRun's GstInterpipe (GStreamer plug-in for communication between two or more independent pipelines)
- RidgeRun's GstRRWebRTC (GStreamer plug-in that turns pipelines into WebRTC compliant endpoints)
- RidgeRun's GstRTSPSink (GStreamer element for high performance streaming to multiple computers using the RTSP/RTP protocols)
- RidgeRun's Gstreamer Daemon - GstD (GStreamer framework for controlling audio and video streaming using TCP connection messages)
- RidgeRun's GstCUDA (RidgeRun CUDA ZeroCopy for GStreamer)
- RidgerRun's GstPTZR (GStreamer Pan Tilt Zoom and Rotate Element)
- RidgeRun's GstColorTransfer (GStreamer plug-in that transfers the color scheme from a reference to a target image)
Camera Info
- USB3 - e-con Systems' See3CAM_CU135 was tested on Jetson TX2 with HD (1280X720) @ 46fps and FullHD (1920x1080) @ 36fps in MJPEG (compressed) format, as well as other settings.
- CSI-2 - 6 MIPI CSI-2 Cameras support for Jetson TX2 from e-con Systems
- CSI-2 - 3 MIPI CSI-2 Cameras support for Jetson TX2 from e-con Systems
V4L2 drivers for cameras
- RidgeRun has a list of drivers already supported in Jetson, please check if the driver that you need is already there. Otherwise, RidgeRun offers services to create the driver for you
Design FAQs
There are some useful FAQs for Jetson TX2 design, link is here.
Ecosystem Products
The following are 3rd-party carriers, enclosures, expansion boards, and accessories available for Jetson TX2.
For the latest list of TX2 compatible products, please visit the Jetson Ecosystem Supported Cameras and Carrier Boards and Production Systems pages.
Please see additional backwards-compatible Ecosystem Products for TX1.
Cameras
- Stereolabs ZED Sensors
- Stereolabs Zed 2i RGB Camera ( 2.2K resolution, Up to a 120° Wide-angle field of view, IP66 certified, Up to 35m Depth Range, Full Compatibility with Nvidia Orin/Jetson Xavier NX/AGX/TX2/Nano)
- Stereolabs Zed 2 RGB Camera ( 2.2K resolution, Up to a 120° Wide-angle field of view, Up to 20m Depth Range, Full Compatibility with Nvidia Orin/Jetson Xavier NX/AGX/TX2/Nano)
- Stereolabs Zed Mini RGB Camera ( 2.2K resolution, Up to a 90° Wide-angle field of view, Up to 15m Depth Range, Full Compatibility with Nvidia Orin/Jetson Xavier NX/AGX/TX2/Nano, Specially designed for AR/VR Applications)
- e-con Systems™ NVIDIA Jetson TX2 cameras
- SmarteCAM IP66 rated ready-to-deploy artificial intelligence smart camera with powerful AI processing capabilities with an onboard NVIDIA Jetson TX2 CPU and 256 core GPU which can perform all image processing and analytics indigenously without the connectivity or power of cloud
- e-con Systems™ 3D MIPI Stereo camera for NVIDIA® Jetson AGX Xavier™/TX2
- e-con Systems™ 13MP AR1335 AF MIPI Jetson TX1/TX2 Camera
- e-con Systems™ USB Stereo Camera for NVIDIA® Jetson AGX Xavier™/TX2
- e-con Systems™ 2MP AR0230AT MIPI Jetson TX1/TX2 Camera
- e-con Systems™ 2MP SONY IMX290 MIPI Jetson TX1/TX2 Camera
- e-con Systems™ 13MP AR1335 MIPI Jetson TX1/TX2 Camera
- e-con Systems™ 3.4 MP AF AR0330 MIPI Jetson TX1/TX2 Camera
- e-con Systems™ 13MP AR1820 MIPI Jetson TX1/TX2 Camera
- e-con Systems™ 3.4 MP AR0330 MIPI Jetson TX1/TX2 Camera
- e-con Systems™ 3.4 MP AR0330 GMSL MIPI Jetson TX1/TX2 Camera
- e-con Systems™ NVIDIA Jetson TX2 cameras
- Allied Vision MIPI CSI-2 (one open-source CSI-2 driver for all cameras on Github.com)
- Alvium 1500 C-050 0.5MP PYTHON 480
- Alvium 1500 C-120 1.2MP AR0135CS
- Alvium 1500 C-210 2.1MP AR0521
- Alvium 1500 C-500 5MP AR0521
- Alvium 1800 C-040 0.4MP Sony IMX287
- Alvium 1800 C-158 1.6MP Sony IMX273
- Allied Vision USB3 Vision
- Alvium 1800 U-040 0.4MP Sony IMX287
- Alvium 1800 U-050 0.5MP PYTHON 480
- Alvium 1800 U-120 1.2MP AR0135CS
- Alvium 1800 U-158 1.6MP Sony IMX273
- Alvium 1800 U-500 5MP AR0521
- Alvium 1800 U-501m NIR 5MP AR0522
- APPROPHO TX1/TX2 Camera Solutions
- DCDZ(冬虫电子) XCB-OV5640 OV5640 M12 lens camera
- DCDZ(冬虫电子) XCB-OV5693 OV5693 camera
- DCDZ(冬虫电子) XCB-H2C HDMI to CSI2 board
- DCDZ(冬虫电子) XCB-H2C4K HDMI to CSI2 4K board
- DCDZ(冬虫电子) XCB-SDI SDI to CSI2 board
- DCDZ(冬虫电子) XCB-8eyes 4 or 8 cameras ADAS expansion board
- Allied Vision MIPI CSI-2 (one open-source CSI-2 driver for all cameras on Github.com)
- Leopard Imaging TX1/TX2 camera kits
- Stereolabs ZED (stereo camera)
Carriers
- Aetina N620 nano-ITX carrier
- Auvidea J100 carrier
- Auvidea J106 carrier (6 camera)
- Auvidea J120 carrier
- Auvidea J130 carrier (4K input)
- Auvidea J140 dual-GbE carrier
- Auvidea J150 OpenGear blade
- Auvidea J200 carrier
- Avermedia EX731-AA carrier
- Avermedia EX713-AA carrier
- Bluetechnix Multi-ToF platform
- ConnectTech Sprocket carrier
- ConnectTech Orbitty carrier
- ConnectTech Spacely carrier
- ConnectTech Cogswell carrier
- ConnectTech Elroy carrier
- ConnectTech 3U VPX card
- DCDZ(冬虫电子) XCB-Lite carrier with eDP, CSI, DSI, MicroHDMI etc
- Gumstix Aerocore2 drone carrier
- Realtimes RTSO-9001 carrier
- Realtimes RTSO-9002 carrier
- Realtimes RTSO-9003 carrier
- Realtimes RTSS-Z5O3U enclosure
Enclosures
- Aaeon BOXER-8120AI enclosure
- Abaco GVC1000 enclosure
- ADLINK DLAP-201-JT2 enclosure
- Advantech MIC-720AI enclosure
- Axiomtek eBOX560-900-FL
- ConnectTech Rosie enclosure
- ConnectTech Rudi enclosure
- ConnectTech Astro carrier
- Curtiss-Wright Parvus DuraCor-312 rugged enclosure
- MiiVii S2 enclosure
- MiiVii EVO TX2 enclosure
- MiiVii EVO TX2 GMSL2 enclosure
- RapidProto Aluminum enclosure
- Rebotnix GUSTAV enclosure
- Silverstone PT13 mini-ITX system
- SMP Robotics T9 System enclosure
- Syslogic IPC/COMPACTA-2 TX2i enclosure
- Syslogic IPC/COMPACTA-2 TX2i enclosure (railway system)
- Syslogic RPC/COMPACTA-2 TX2i enclosure (IP67)
- Vision4CE CHARM-100 enclosure
Expansion Boards
- Auvidea J20 6-camera module
- DCDZ(冬虫电子) XCB-AUDIO Sound card expansion board
- DCDZ(冬虫电子) XCB-DSPK Digital speaker and MIC expansion board
- BeadaPanel USB Display+WiFi+Storage 3-In-1 Companion Kit
Other
- Aeryon SkyRanger R80 drone
- black.ai perception platform
- RidgeRun GStreamer and Multimedia Solutions
- Skydio 2 drone
Getting Help
If you have a technical question or bug report, please visit the DevTalk Developer Forums and search or start a topic.
We summarize some useful topics in http://elinux.org/Jetson_TX2/TX2_Issue page.
See the official Support page on Embedded Developer Zone for warranty and RMA information: https://developer.nvidia.com/embedded/support
For NVIDIA webstore Customer Service, please see the My Account page or contact 1-800-797-6530.