Jetson Zoo
This page contains instructions for installing various open source add-on packages and frameworks on NVIDIA Jetson, in addition to a collection of DNN models for inferencing.
Below are links to precompiled binaries built for aarch64 (arm64) architecture, including support for CUDA where applicable. These are intended to be installed on top of JetPack.
Note that JetPack comes with various pre-installed components such as the L4T kernel, CUDA Toolkit, cuDNN, TensorRT, VisionWorks, OpenCV, GStreamer, Docker, and more.
For the latest updates and support, refer to the listed forum topics. Feel free to contribute to the list below if you know of software packages that are working & tested on Jetson.
Machine Learning
Jetson is able to natively run the full versions of popular machine learning frameworks, including TensorFlow, PyTorch, Caffe2, Keras, and MXNet.
There are also helpful deep learning examples and tutorials available, created specifically for Jetson - like Hello AI World and JetBot.
TensorFlow
- Website: https://tensorflow.org
- Source: https://github.com/tensorflow/tensorflow
- Version: 1.15, 2.0
- Packages:
- 1.15 pip wheel (Python 3.6)
- 2.0 pip wheel (Python 3.6)
- Supports: JetPack 4.2.x, JetPack 4.3 (Jetson Nano / TX1 / TX2 / Xavier)
- Install Guide: [1]
- Forum Topic: devtalk.nvidia.com/default/topic/1048776/jetson-nano/official-tensorflow-for-jetson-nano-/
- Build from Source: https://devtalk.nvidia.com/default/topic/1055131/jetson-agx-xavier/building-tensorflow-1-13-on-jetson-xavier/
# install prerequisites
$ sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev zip libjpeg8-dev
# install and upgrade pip3
$ sudo apt-get install python3-pip
$ sudo pip3 install -U pip testresources setuptools
# install the following python packages
$ sudo pip3 install -U numpy==1.16.1 future==0.17.1 mock==3.0.5 h5py==2.9.0 keras_preprocessing==1.0.5 keras_applications==1.0.8 gast==0.2.2 enum34 futures protobuf
# to install TensorFlow 1.15:
$ sudo pip3 install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v43 'tensorflow-gpu<2'
# or install the latest version of TensorFlow (2.0)
$ sudo pip3 install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v43 tensorflow-gpu
PyTorch (Caffe2)
- Website: https://pytorch.org/
- Source: https://github.com/pytorch/pytorch
- Version: PyTorch v1.0.0 - v1.4.0
- Packages:
JetPack 4.4 DP
Python 2.7 | Python 3.6 | |
---|---|---|
v1.2.0 | pip wheel | pip wheel |
v1.3.0 | pip wheel | pip wheel |
v1.4.0 | pip wheel | pip wheel |
JetPack 4.2 / 4.3
Python 2.7 | Python 3.6 | |
---|---|---|
v1.0.0 | pip wheel | pip wheel |
v1.1.0 | pip wheel | pip wheel |
v1.2.0 | pip wheel | pip wheel |
v1.3.0 | pip wheel | pip wheel |
v1.4.0 | pip wheel | pip wheel |
- Supports: JetPack 4.2.x, JetPack 4.3, JetPack 4.4 DP (Jetson Nano / TX1 / TX2 / Xavier)
- Forum Topic: devtalk.nvidia.com/default/topic/1049071/jetson-nano/pytorch-for-jetson-nano/
- Build from Source: https://devtalk.nvidia.com/default/topic/1049071/#5324123
note — the PyTorch and Caffe2 projects have merged, so installing PyTorch will also install Caffe2
# for PyTorch v1.4.0, install OpenBLAS
$ sudo apt-get install libopenblas-base
# Python 2.7 (download pip wheel from above)
$ pip install torch-1.4.0-cp27-cp27mu-linux_aarch64.whl
# Python 3.6 (download pip wheel from above)
$ pip3 install Cython
$ pip3 install numpy torch-1.4.0-cp36-cp36m-linux_aarch64.whl
As per the the PyTorch 1.4 Release Notes, Python 2 support is now deprecated and PyTorch 1.4 is the last version to support Python 2.
MXNet
- Website: https://mxnet.apache.org/
- Source: https://github.com/apache/incubator-mxnet
- Version: 1.4, 1.6
- Packages:
Python 2.7 | Python 3.6 | |
---|---|---|
v1.4 (JetPack 4.2.x) | pip wheel | pip wheel |
v1.6 (JetPack 4.3) | pip wheel | pip wheel |
- Supports: JetPack 4.2.x, JetPack 4.3 (Jetson Nano / TX1 / TX2 / Xavier)
- Forum Topic: v1.4 (JetPack 4.2.x) | v1.6 (JetPack 4.3)
- Build from Source: https://devtalk.nvidia.com/default/topic/1049293/#5326119
# Python 2.7
sudo apt-get install -y git build-essential libatlas-base-dev libopencv-dev graphviz python-pip
sudo pip install mxnet-1.4.0-cp27-cp27mu-linux_aarch64.whl
# Python 3.6
sudo apt-get install -y git build-essential libatlas-base-dev libopencv-dev graphviz python3-pip
sudo pip install mxnet-1.4.0-cp36-cp36m-linux_aarch64.whl
Keras
- Website: https://keras.io/
- Source: https://github.com/keras-team/keras
- Version: 2.2.4
- Forum Topic: https://devtalk.nvidia.com/default/topic/1049362/#5325752
First, install TensorFlow from above.
# beforehand, install TensorFlow (https://eLinux.org/Jetson_Zoo#TensorFlow)
$ sudo apt-get install -y build-essential libatlas-base-dev gfortran
$ sudo pip install keras
Hello AI World
- Website: https://developer.nvidia.com/embedded/twodaystoademo
- Source: https://github.com/dusty-nv/jetson-inference
- Supports: Jetson Nano, TX1, TX2, Xavier
- Build from Source:
# download the repo
$ git clone --recursive https://github.com/dusty-nv/jetson-inference
$ cd jetson-inference
# configure build tree
$ mkdir build
$ cd build
$ cmake ../
# build and install
$ make -j$(nproc)
$ sudo make install
$ sudo ldconfig
Model Zoo
Below are various DNN models for inferencing on Jetson with support for TensorRT. Included are links to code samples with the model and the original source.
Note that many other models are able to run natively on Jetson by using the Machine Learning frameworks like those listed above.
For performance benchmarks, see these resources:
- Jetson Nano Deep Learning Inference Benchmarks
- Jetson TX1/TX2 - NVIDIA AI Inference Technical Overview
- Jetson AGX Xavier Deep Learning Inference Benchmarks
Classification
Network | Dataset | Resolution | Classes | Framework | Format | TensorRT | Samples | Original |
---|---|---|---|---|---|---|---|---|
AlexNet | ILSVRC12 | 224x224 | 1000 | Caffe | caffemodel |
Yes | Hello AI World | BVLC |
GoogleNet | ILSVRC12 | 224x224 | 1000 | Caffe | caffemodel |
Yes | Hello AI World | BVLC |
ResNet-18 | ILSVRC15 | 224x224 | 1000 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
ResNet-50 | ILSVRC15 | 224x224 | 1000 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
ResNet-101 | ILSVRC15 | 224x224 | 1000 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
ResNet-152 | ILSVRC15 | 224x224 | 1000 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
VGG-16 | ILSVRC14 | 224x224 | 1000 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
VGG-19 | ILSVRC14 | 224x224 | 1000 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
Inception-v4 | ILSVRC12 | 299x299 | 1000 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
Inception-v4 | ILSVRC12 | 299x299 | 1000 | TensorFlow | TF-TRT (UFF) |
Yes | tf_trt_models | TF-slim |
Mobilenet-v1 | ILSVRC12 | 224x224 | 1000 | TensorFlow | TF-TRT (UFF) |
Yes | tf_trt_models | TF-slim |
Object Detection
Network | Dataset | Resolution | Classes | Framework | Format | TensorRT | Samples | Original |
---|---|---|---|---|---|---|---|---|
SSD-Mobilenet-v1 | COCO | 300x300 | 91 | TensorFlow | UFF |
Yes | Hello AI World TRT_object_detection |
TF Zoo |
SSD-Mobilenet-v2 | COCO | 300x300 | 91 | TensorFlow | UFF |
Yes | TF Zoo | |
SSD-Inception-v2 | COCO | 300x300 | 91 | TensorFlow | UFF |
Yes | TF Zoo | |
YOLO-v2 | COCO | 608x608 | 80 | Darknet | Custom |
Yes | trt-yolo-app | YOLO |
YOLO-v3 | COCO | 608x608 | 80 | Darknet | Custom |
Yes | trt-yolo-app | YOLO |
Tiny YOLO-v3 | COCO | 416x416 | 80 | Darknet | Custom |
Yes | trt-yolo-app | YOLO |
Tiny YOLO-v3 | COCO | 416x416 | 80 | Darknet | Custom |
Yes | trt-yolo-app | YOLO |
Faster-RCNN | Pascal VOC | 500x375 | 21 | Caffe | caffemodel |
Yes | TensorRT sample | GitHub |
Segmentation
Network | Dataset | Resolution | Classes | Framework | Format | TensorRT | Samples | Original |
---|---|---|---|---|---|---|---|---|
FCN-ResNet18 | Cityscapes | 2048x1024 | 21 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | Cityscapes | 1024x512 | 21 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | Cityscapes | 512x256 | 21 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | DeepScene | 864x480 | 5 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | DeepScene | 576x320 | 5 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | DeepScene | 864x480 | 5 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | Multi-Human | 640x360 | 21 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | Multi-Human | 512x320 | 21 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | Pascal VOC | 512x320 | 21 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | Pascal VOC | 320x320 | 21 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | SUN RGB-D | 640x512 | 21 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-ResNet18 | SUN RGB-D | 512x400 | 21 | PyTorch | ONNX |
Yes | Hello AI World | GitHub |
FCN-Alexnet | Cityscapes | 2048x1024 | 21 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
FCN-Alexnet | Cityscapes | 1024x512 | 21 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
FCN-Alexnet | Pascal VOC | 500x356 | 21 | Caffe | caffemodel |
Yes | Hello AI World | GitHub |
U-Net | Carvana | 512x512 | 1 | TensorFlow | UFF |
Yes | Nano Benchmarks | GitHub |
Pose Estimation
Network | Dataset | Resolution | Classes | Framework | Format | TensorRT | Samples | Original |
---|---|---|---|---|---|---|---|---|
ResNet18_att | COCO | 224x224 | 16 | PyTorch | torch2trt | Yes | trt_pose | GitHub |
DenseNet121_att | COCO | 224x224 | 16 | PyTorch | torch2trt | Yes | trt_pose | GitHub |
Computer Vision
OpenCV
- Website: https://opencv.org/
- Source: https://github.com/opencv/opencv
- Version: 3.3.1 (JetPack <= 4.2.x), 4.1 (JetPack 4.3, JetPack 4.4)
- Supports: Jetson Nano / TX1 / TX2 / Xavier
- OpenCV is included with JetPack, compiled with support for GStreamer. To build a newer version or to enable CUDA support, see these guides:
- nano_build_opencv (GitHub)
- Installing OpenCV 3.4.6
Robotics
ROS
- Website: http://ros.org/
- Source: https://github.com/ros
- Version: ROS Melodic
- Supports: JetPack 4.2.x, JetPack 4.3 (Jetson Nano / TX1 / TX2 / Xavier)
- Installation: http://wiki.ros.org/melodic/Installation/Ubuntu
# enable all Ubuntu packages:
$ sudo apt-add-repository universe
$ sudo apt-add-repository multiverse
$ sudo apt-add-repository restricted
# add ROS repository to apt sources
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
$ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
# install ROS Base
$ sudo apt-get update
$ sudo apt-get install ros-melodic-ros-base
# add ROS paths to environment
sudo sh -c 'echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc'
NVIDIA Isaac SDK
- Website: https://developer.nvidia.com/isaac-sdk
- Version: 2019.2, 2019.3
- Supports: JetPack 4.2.x, JetPack 4.3 (Jetson Nano / TX2 / Xavier)
- Downloads: https://developer.nvidia.com/isaac/downloads
- Documentation: https://docs.nvidia.com/isaac
Isaac SIM
- Downloads: https://developer.nvidia.com/isaac/downloads
- Documentation: http://docs.nvidia.com/isaac/isaac_sim/index.html
IoT / Edge
AWS Greengrass
- Website: https://aws.amazon.com/greengrass/
- Source: https://github.com/aws/aws-greengrass-core-sdk-c
- Version: v1.9.1
- Supports: JetPack 4.2.x, JetPack 4.3 (Jetson Nano / TX1 / TX2 / Xavier)
- Forum Thread: https://devtalk.nvidia.com/default/topic/1052324/#5341970
1. Create Greengrass user group:
$ sudo adduser --system ggc_user
$ sudo addgroup --system ggc_group
2. Setup your AWS account and Greengrass group during this page: https://docs.aws.amazon.com/greengrass/latest/developerguide/gg-config.html
After downloading your unique security resource keys to your Jetson that were created in this step, proceed to #3 below.
3. Download the AWS IoT Greengrass Core Software (v1.9.1) for ARMv8 (aarch64):
$ wget https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.9.1/greengrass-linux-aarch64-1.9.1.tar.gz
4. Following step #4 from this page, extract Greengrass core and your unique security keys on your Jetson:
$ sudo tar -xzvf greengrass-linux-aarch64-1.9.1.tar.gz -C /
$ sudo tar -xzvf <hash>-setup.tar.gz -C /greengrass # these are the security keys downloaded above
5. Download AWS ATS endpoint root certificate (CA):
$ cd /greengrass/certs/
$ sudo wget -O root.ca.pem https://www.amazontrust.com/repository/AmazonRootCA1.pem
6. Start Greengrass core on your Jetson:
$ cd /greengrass/ggc/core/
$ sudo ./greengrassd start
You should get a message in your terminal Greengrass sucessfully started with PID: xxx
NVIDIA DeepStream
- Website: https://developer.nvidia.com/deepstream-sdk
- Version: 4.0.2
- Supports: JetPack 4.2.x, JetPack 4.3 (Jetson Nano / TX1 / TX2 / Xavier)
- FAQ: https://developer.nvidia.com/deepstream-faq
- GitHub Samples:
Containers
Docker
- Website: https://docker.com/
- Source: https://github.com/docker
- Version: 18.06
- Support: ≥ JetPack 3.2 (Jetson Nano / TX1 / TX2 / Xavier)
- Installed by default in JetPack-L4T
To enable GPU passthrough, enable access to these device nodes with the --device
flag when launching Docker containers:
/dev/nvhost-ctrl
/dev/nvhost-ctrl-gpu
/dev/nvhost-prof-gpu
/dev/nvmap
/dev/nvhost-gpu
/dev/nvhost-as-gpu
The /usr/lib/aarch64-linux-gnu/tegra
directory also needs mounted.
Below is an example command line for launching Docker with access to the GPU:
docker run --device=/dev/nvhost-ctrl --device=/dev/nvhost-ctrl-gpu --device=/dev/nvhost-prof-gpu --device=/dev/nvmap --device=/dev/nvhost-gpu --device=/dev/nvhost-as-gpu -v /usr/lib/aarch64-linux-gnu/tegra:/usr/lib/aarch64-linux-gnu/tegra <container-name>
To enable IPVLAN for Docker Swarm mode: https://blog.hypriot.com/post/nvidia-jetson-nano-build-kernel-docker-optimized/
Kubernetes
- Website: https://kubernetes.io/
- Source: https://github.com/kubernetes/
- Support: ≥ JetPack 3.2 (Jetson Nano / TX1 / TX2 / Xavier)
- Distributions:
- MicroK8s (v1.14)
$ sudo snap install microk8s --classic
- k3s (v0.5.0)
$ wget https://github.com/rancher/k3s/releases/download/v0.5.0/k3s-arm64
- MicroK8s (v1.14)
To configure L4T kernel for K8S: https://medium.com/@jerry_liang/deploy-gpu-enabled-kubernetes-pod-on-nvidia-jetson-nano-ce738e3bcda9
See also: https://medium.com/jit-team/building-a-gpu-enabled-kubernets-cluster-for-machine-learning-with-nvidia-jetson-nano-7b67de74172a