Session:The Internet of Things

Revision as of 12:44, 14 September 2012 by Tim Bird (Talk | contribs) (Transcript: add several minutes to transcript)

Jump to: navigation, search

Name the page 'Session:<title>', fill in the details below, and remove this line

Session Details

ELC 2012
February 16, 2012
Mike Anderson
The PTR Group
The Internet of Things
here (linux foundation) and here (free-electrons)


Consumers increasingly want inter-operability of their devices. They want to program their DVR via their mobile phone. They want their music available everywhere. They want their television to update social networking sites. But, as developers, how do we make this possible? This presentation will discuss the imminent "Internet of things" and how we can extend connectivity to previously "dumb" devices like TVs, refrigerators, and other appliances and how this connectivity is directly related to IPv6 support. The target audience for this presentation are platform developers looking to enable connectivity in a new class of intelligent appliances. This presentation is targeted at introductory-level developers with some understanding of the IP protocol stack.


Mike Anderson is currently CTO and Chief Scientist for The PTR Group, Inc. With over 33 years in the embedded and real-time computing industry, Mike works with a number of RTOS offerings. However, his focus over the past decade is primarily embedded Linux and Android on a number of CPU architectures. As an instructor and consultant, Mike is a regular speaker at the Embedded Systems Conference and the Embedded Linux Conference as well as other Linux-oriented conferences such as LinuxWorld, Ubuntu Live and the Real-Time Embedded Computing Conference series. Ongoing projects include several efforts focused on porting applications from RTOS offerings such as VxWorks and pSOS to real-time enhanced Linux platforms. Additional projects include Android bring up and its use in non-phone applications and Linux in high-performance computing platforms.


Transcribed by
Tim Bird

(From the Linux Foundation version of the video)

0:00 - 1:00: >> TIM BIRD: Good morning everyone. Hopefully you had a good night's rest and hopefully you had fun at the reception last night. I'd like to thank Intel and Yocto for providing that reception. It was a pretty neat venue. Hopefully if you were in the little lobby at the beginning you noticed that there was a whole other section of the museum to go walk in. I was worried about that. I didn't notice

it myself for a while.  But then you got in there and there was a lot of interesting stuff and hors d'oeuvres and..

But I just want to remind people about the demo session - the technical showcase that we're having tonight. You might want to get ready for that. We're having a key-signing party. I have gotten ready. I'm doing lazy-man's keysigning prep. You're supposed... It's nice if you have little slips of paper, but if you don't you can just write your key on the back of your badge and then have people take your picture or whatever.

Um. But let's get started with our sessions for today.

1:00 - 2:00: We're going to start of with what I think will be a very interesting session, a keynote address, by Mike Anderson. And Mike Anderson has been coming to embedded Linux conference for years and years, and is, quite frankly, one of my favorite speakers. He's always got really interesting stuff to say. He's the Chief Scientist for The PTR Group, out of Washington D.C., and always working on interesting things, and always has real practical, hands-on information in his tutorials. And I look forward to hearing his comments on the Internet of Things.

Please join me in welcoming Mike.


>> MIKE ANDERSON: Thanks Tim. [slide 1 - Title]

OK. It even worked. Great job. [laughs]

I want to first of all thank ELC, Tim and the organizers for giving me the opportunity to get up in front of you and speak about the Internet of Things.

2:00 - 3:00: As we move along with the way technology is developing at this point, we have a very broad selection of opportunities for those of us in the embedded Linux community, and those of us who are interfacing to devices and understand what a device actually is. [slide 2 - What we will talk about]

This is what we'll be talking about, and this is all of the words in this presentation. I just want to get them all out of the way up front. So that now you've had an opportunity to see them, let's actually get into the material [slide 3 - Evolution of the Internet]

So, when we start with the Internet back in the 60's, it was originally conceived as a mechanism for doing away with the old Telex systems that were employed by the military. So in it's original form, the ARPANet was designed as a mechanism for being able to send message traffic around between military bases.

3:00 - 4:00: That, of course, because a lot of the research for the ARPANet was being done by universities, the concept of being able to send out an e-mail, and say "Hey, everybody. I've got a party at my house this Saturday night. Why don't you all come over.", really carried forward as these univerisity researchers and grad students, etc., then left their respective institutions and got out into industry.

Now, we went beyond that, to the introduction of Netscape and Mosaic, where we suddenly had Web 1.0. And the concept behind Web 1.0 was simply that of a library. There's lots of information out here. We will go out into the library. We'll look around. We'll ask a few questions. We'll get some information. We'll bring that back and think about it.

Web 2.0 introduced the concept of, instead of simple being consumers of information, we became producers of information.

4:00 - 5:00: Today, for every minute that goes by, there are 8 hours of YouTube video being uploaded to Google.

That's a lot.

Now, as we become producers, whether it's blogs, whether it's video, whether it's whatever we're producing, putting it out there, we of course are asserting our individuality, our concept, our "person-ness" out into the network. And, of course, there are the downsides, where people will then grab a hold of that information and use it against us. We'll talk a little bit more about that later.

But what we're at, right now, is the cusp of a new transition in the Web - Web 3.0. With Web 3.0 we're talking about something called the "semantic Web". With the semantic Web there's actually way more machines on the Internet than there are people.

5:00 - 6:00: And in the semantic Web these machines start chatting with each other sharing data. As they share data, we will hopefully be able to derive some wisdom from that. We'll see how that play our here in the next few charts. [slide 3]

So what is the Internet of Things? Well, it can be defined as the point in time at which the number of objects on the Internet outnumber the number of people on the Internet. That actually happened about 2008/2009 timeframe. And, when that happened we suddenly started to realize that, hey, the approach that we're using right now for the Internet (IPv4), is probably not going to scale. So we have to do something about that. We'll get to that in a bit.

At the same time, when they start looking at the proliferation of devices on the Internet, in 2008/2009 we had about 2 billion devices on the Internet.

6:00 - 7:00: Today that's calculated to be about 5 billion devices on the Internet. By 2015 - 15 billion devices. By 2020 - 50 billion devices on the Internet. That means that each one of us will on average, by the year 2020, have 6 different Internet-connected devices on our person at all times. Now, some of you, certainly those of you from Asia, already have 2 or 3 cell phones with you. Now that tends to be more common in places like Japan, where they have a cell phone for the family, a cell phone for the business, a cell phone for whatever other things they may be up to. And, as we've seen the deployment of these technologies, we tend to see a lot of this happening over in Asia first.

7:00 - 8:00: And then it rolls into the west. We'll see a little bit more about that in a bit. [slide 4] Here, is kind of a selection of connected things courtesy of the latest CES (the Consumer Electronics Show). Here we see an internet-connected television. This is from LG. This happens to be running ARM rather than a more traditional sort of MIPS sort of thing, where we see MIPS used to have a very strong hold in the settop box business. But, the interesting thing about this television is that it is running Android, and not Google TV. They perceive that the market is actually people getting access to YouTube, Hulu, Vuduu and Netflix, rather than using the Google Portal.

8:00 - 9:00: And of course, because it is Android they have the option of setting up their own private marketplace, so that you can download Angry Birds. [ahem]

Now here is a Samsung refrigerator with a 7-inch panel in it. The idea is, of course, that you will hook your refrigerator into the Internet, it will be able to download the latest weather, and you'll be able to use it as the replacement for the corkboard, on the old refrigerator.

Now, it also has the concept that you can potentially scan pictures, so instead of having all those kids pictures magnetically plastered to the refrigerator, we'll simply scan them and have a running slide show on the refrigerator - in case we really wanted to see those.

Now here's another situation. Now, here we have Kia has introduced the concept of an Android panel on the front dashboard.

9:00 - 10:00: Talk about distracted driving. It's like... I'm not sure exactly how well this is going to go over. But it certainly is.. They're argument is that it's heads up display.

We have, down here in the corner, we have a wirelessly connected baby scale. Again, some of these things you wonder "Why"? But I guess if you were a health care provider and you noticed that the babies from a particular region were all underweight, maybe that would be indicative of some problem in the water. Hmm. I'm not sure.

They did not invent Internet cows. However, they did introduce this concept of being able to instrument the cattle to track their health and status. It turns out that cattle produce about 200 megabytes worth of data every year, for each cow.

10:00 - 11:00: Of course I don't necessarily want to be the person who instruments the back end of the cow to see how things are coming out. But in any case the concept is certainly there.

And this one is kind of a scary one. You may not be able to tell from the back, but it says "Brainwave TV". In this particular example, I mean it's connected -- you actually wear this thing and think the television channel - and it changes TV. You have to be very careful about what you're thinking. [laughter] Because it could change TV to a channel that could be embarrassing. But, certainly, this is the kind of thing that we're starting to see. And this of course - all of these with the exception of the cow - was introduced at CES this year.

[slide 5 - Connected Earth] But what we're really looking at here is the Earth, as a system, has been able to produce gigabytes worth of data every single day.

11:00 - 12:00: We just haven't been able to listen to it. Well now, with the Internet of Things and the proliferation of sensors and technologies, we can start listening to the Earth.

We're used to thinking about seismic - certainly out here in California - seismic sensors. But what if we started thinking about the minerals, or the water in the ground. Could we have produced.. Could we have prevented a dustbowl situation. Had we instrumented the ground properly, could we have prevented that whole episode in American history from happening. If we had just simply been able to listen to the Earth effectively.

[slide 6 - Enablers] So what are the enablers for the Internet of Things. We have tagging things. Now here we see an RFID tag. And there's been a huge push for RFID in a lot of different technologies - a lot of different components.

12:00 - 13:00: We'll talk more about that in a bit.

We have sensing things. And we have now a situation where people are actually instrumenting themselves, for their own reasons. For instance in this particular case, this thing on the guy's arm is an air quality sensor. So this individual.. this particular product is targeted at someone who's asthmatic, and they want to know what the quality of the air is, and have it alert them on their phone, before they have an asthma attack. OK.

We have shrinking things. This is an RFID tag. It used to be this. Now it's that.

And we have thinking things. Now this is of course the proliferation of devices like AVRs, PIC24s and 32s, ARM Coretex M0s, M3s and of course now moving up the scale into all the Linux devices that we're actually out here deploying.

13:00 - 14:00: [slide 7 - RFID Everywhere]

So if we think about the tagging things first, we see that the RFID piece of it - this is an RFID tag about the size of a grain of rice. This is the kind of thing that people typically implant in their animals. Their cats, dogs, etc. So if they become lost they can simple be scanned by the professional - by the veterinarian - and figure out where that cat belongs and contacted. We see it here against a human hand and then we see of course it's new smaller cousin, being produced. But what's an application for this kind of stuff. Well here we see an RFID-enabled cat door. So that if the cat with the appropriate RFID comes up to the door it will open, and the cat can come through. But the run-of-the-mill stray cat will not be able to get through that door.

14:00 - 15:00: Where is the big push for RFID coming? Well, it's actually coming from retailers. If you take a look at what's happening with retailers like Walmart. They're getting ready to switch from an inventory model to a consignment model. That is, they won't actually pay the producers of the goods for the goods until the goods are sold. This is going to be a huge change in the way business is conducted throughout the world.

So as we see RFID proliferation, we'll see it in milk cartons, we'll see it in our clothes, we'll see it just about everywhere. Now this all has a good side and a not-so-good side. We'll talk about the security bits in a minute.

[slide 8 - Instrumenting Things/People]

And of course "sensing things". 15:00 - 16:00: As we start instrumenting both things and people, we see that there's already a market for books on Getting Started with the Internet of Things.

Here we see an example of a human who has augmented their sensing with ultrasonic sensors and haptic feedback devices. So the closer they get to a wall, the more the haptic feedback vibrates. They can then sense their environment. This of course is a potential boon for the blind and other situations. However think about what that could be used for in terms of augmented reality, in terms of augmenting our sensors, in terms of enabling humans to be able to reach out beyond our simple surroundings to detect things out in the world.

And we see a couple of examples of this using a mesh technology. This happens to be built on top of Arduinos.

[slide 9 - Smart Dust, Nanoboats and MEMS]

16:00 - 17:00: Well as we start shrinking things, now we start getting into some kind of bizarre applications.

17:00 - 18:00:

18:00 - 19:00:

19:00 - 20:00:

20:00 - 21:00:

21:00 - 22:00:

22:00 - 23:00:

23:00 - 24:00:

24:00 - 25:00:

25:00 - 26:00:

26:00 - 27:00:

27:00 - 28:00:

28:00 - 29:00:

29:00 - 30:00:

30:00 - 31:00:

31:00 - 32:00:

32:00 - 33:00:

33:00 - 34:00:

34:00 - 35:00:

35:00 - 36:00:

36:00 - 37:00:

37:00 - 38:00:

38:00 - 39:00:

39:00 - 40:00:

40:00 - 41:00:

41:00 - 42:00:

42:00 - 43:00:

43:00 - 44:00:

44:00 - 45:00:

45:00 - 46:00:

46:00 - 47:00:

47:00 - 48:00:

48:00 - 49:00:

49:00 - 50:00:

50:00 - 51:00:

51:00 - 52:00:

52:00 - 53:00:

53:00 - 54:00:

54:00 - 55:00:

55:00 - 56:00:

56:00 - 57:00:

57:00 - 58:00:

58:00 - 59:00:

59:00 - 60:00: